Page content

Featured Publications

Lagrangian profiles of riverine autotrophy, organic matter transformation, and micropollutants at extreme drought

Kamjunke, N., Beckers, L.-M., Herzsprung, P., von Tümpling, W., Lechtenfeld, O., Tittel, J., Risse-Buhl, U., Rode, M., Wachholz, A., Kallies, R., Schulze, T., Krauss, M., Brack, W., Comero, S., Gawlik, B. M., Skejo, H., Tavazzi, S., Mariani, G., Borchardt, D., Weitere, M. (2022) Science of The Total Environment. doi: 10.1016/j.scitotenv.2022.154243

Lagrangian profiles of Elbe at extreme drought
We investigated autotrophic processes, heterotrophic carbon utilization, and micropollutant concentrations applying a Lagrangian sampling design in a 600 km section of the River Elbe (Germany) at historically low discharge. Autotrophic and heterotrophic process rates and micropollutant concentrations increased from up- to downstream reaches, but their magnitudes were not distinctly different to conditions at medium discharges.

Large wood in river restoration: a case study on the effects on hydromorphology, biodiversity, and ecosystem functioning

Anlanger, C., Attermeyer, K., Hille, S., Kamjunke, N., Koll, K., König, M., Schnauder, I., Tavares, C., Weitere, M., Brauns, M. (2021) Hydrobiology. doi: 10.1002/iroh.202102089

Large wood in river restoration
We quantified the hydromorphological, biological, and functional effects of large wood installed in a large gravel-bed river. Our integrative approach revealed cascading effects from the provisioning of new habitats, the increase of species diversity to higher ecosystem functioning. It also demonstrated that hydromorphological parameters or community composition alone are insufficient to quantify the complex effects of large wood.

Hydraulic and biological controls of biofilm nitrogen uptake in gravel-bed streams

Anlanger, C., Risse-Buhl, U., von Schiller, D., Noss, C., Weitere, M., Lorke, A. (2021) Limnology and Oeanography. doi: 10.1002/lno.11927

Controls of biofilm nitrogen uptake
We analyzed the relative importance of hydraulic and biological controls on biofilm nitrogen uptake in gravel-bed streams. Sixty-four percent of the within-stream variability in nitrogen uptake velocity was explained by the turbulent dissipation rate and the biofilm biomass. Our results improved the mechanistic understanding of the processes regulating biofilm nitrogen uptake at small scale which supports upscaling to larger spatiotemporal scales along stream networks.

High irradiation and low discharge promote the dominant role of phytoplankton in riverine nutrient dynamics

Kamjunke, N., Rode, M., Baborowski, M., Kunz, J.V., Zehner, J., Borchardt, D., Weitere, M. (2021) Limnology and Oceanography. doi: 10.1002/lno.11778

Riverine nutrient dynamics dominated by phytoplankton
In Lagrangian samplings we observed a longitudinal increase of phytoplankton biomass, a decrease of dissolved nutrient concentrations, and high rates of nitrate assimilation at low discharge in summer. Rising molar C:P ratios of seston indicated a phosphorus limitation of phytoplankton. Global radiation combined with mixing depth had a strong predictive power to explain maximum chlorophyll concentration.

Hydromorphologic sorting of in-stream nitrogen uptake across spatial scales …

Risse-Buhl, U., Anlanger, C., Noss, C., Lorke, A., von Schiller, D., Weitere, M. (2020) Ecosystems. doi: 10.1007/s10021-020-00576-7

Hydromorphologic sorting of in-stream nitrogen uptake across spatial scales …

Whole-reach 15N ammonium injection experiments were performed to better understand the effects of hydromorphology and other environmental constraints, across three spatial scales: micro, meso and reach. Our results reveal the important role of hydromorphologic sorting of primary uptake compartments at mesoscale as a controlling factor for reach-scale N uptake in streams.

Near streambed flow shapes microbial guilds within and across trophic levels in fluvial biofilms ...

Risse-Buhl, U., Anlanger, C., Chatzinotas, A., Noss, C., Lorke, A., Weitere, M., (2020), Limnol. Oceanogr. 65(6). doi:10.1002/lno.11451

Near streambed flow shapes microbial guilds within and across trophic levels in fluvial biofilms
This study links flow heterogeneity in mountainous stream ecosystem to the diversity and functioning of fluvial biofilms. With increasing flow fluvial biofilms shifted towards increasing autotrophy, while trophic structure shifted towards a decreasing importance of grazer control.

Complete publication list


2022 (23)

You could use our publication index for further requests.

2022 (23)

to index


2021 (35)

You could use our publication index for further requests.

2021 (35)

to index

2020 (34)

2019 (31)

2018 (19)

2017 (30)

2016 (39)

2015 (30)

2014 (22)

2013 (25)

2012 (27)

2011 (22)

2010 (26)

2009 (24)

2008 (21)

2007 (31)

2006 (35)

2005 (34)

2004 (47)

2003 (32)

2002 (36)

2001 (25)

2000 (26)

1999 (17)

1998 (29)

1997 (9)

1996 (1)