Seiteninhalt


 Ausgewählte Publikationen


Becoming nose-blind - Climate change impacts on chemical communication

Roggatz, C.C., Saha, M., Blanchard, S., Schirrmacher, P., Fink, P., Verheggen, F., Hardege, J.D. (2022) Global Change Biology. doi: 10.1111/gcb.16209

Becoming nose-blind
Chemical communication via infochemicals plays a pivotal role in ecological interactions, allowing organisms to sense their environment, locate predators, food, habitats, or mates. A growing number of studies suggest that climate change-associated stressors can modify these chemically mediated interactions, causing info-disruption that scales up to the ecosystem level. However, our understanding of the underlying mechanisms is scarce. This publication illustrates that climate change affects different realms in similar patterns, from molecular to ecosystem-wide levels. The importance of different stressors is assessed for terrestrial, freshwater, and marine ecosystems and a systematic approach is proposed to address knowledge gaps and cross-disciplinary research avenues.
Publikation


Lagrangian profiles of riverine autotrophy, organic matter transformation, and micropollutants at extreme drought

Kamjunke, N., Beckers, L.-M., Herzsprung, P., von Tümpling, W., Lechtenfeld, O., Tittel, J., Risse-Buhl, U., Rode, M., Wachholz, A., Kallies, R., Schulze, T., Krauss, M., Brack, W., Comero, S., Gawlik, B. M., Skejo, H., Tavazzi, S., Mariani, G., Borchardt, D., Weitere, M. (2022) Science of The Total Environment. doi: 10.1016/j.scitotenv.2022.154243

Lagrangian profiles of Elbe at extreme drought
We investigated autotrophic processes, heterotrophic carbon utilization, and micropollutant concentrations applying a Lagrangian sampling design in a 600 km section of the River Elbe (Germany) at historically low discharge. Autotrophic and heterotrophic process rates and micropollutant concentrations increased from up- to downstream reaches, but their magnitudes were not distinctly different to conditions at medium discharges.
Publikation


Large wood in river restoration: a case study on the effects on hydromorphology, biodiversity, and ecosystem functioning


Anlanger, C., Attermeyer, K., Hille, S., Kamjunke, N., Koll, K., König, M., Schnauder, I., Tavares, C., Weitere, M., Brauns, M (2021) Hydrobiology. doi: 10.1002/iroh.202102089

Large wood in river restoration
We quantified the hydromorphological, biological, and functional effects of large wood installed in a large gravel-bed river. Our integrative approach revealed cascading effects from the provisioning of new habitats, the increase of species diversity to higher ecosystem functioning. It also demonstrated that hydromorphological parameters or community composition alone are insufficient to quantify the complex effects of large wood.
Publikation



Hydraulic and biological controls of biofilm nitrogen uptake in gravel-bed streams

Anlanger, C., Risse-Buhl, U., von Schiller, D., Noss, C., Weitere, M., Lorke, A. (2021) Limnology and Oeanography. doi: 10.1002/lno.11927

Controls of biofilm nitrogen uptake in streams
We analyzed the relative importance of hydraulic and biological controls on biofilm nitrogen uptake in gravel-bed streams. Sixty-four percent of the within-stream variability in nitrogen uptake velocity was explained by the turbulent dissipation rate and the biofilm biomass. Our results improved the mechanistic understanding of the processes regulating biofilm nitrogen uptake at small scale which supports upscaling to larger spatiotemporal scales along stream networks.
Publikation



High irradiation and low discharge promote the dominant role of phytoplankton in riverine nutrient dynamics

Kamjunke, N., Rode, M., Baborowski, M., Kunz, J.V., Zehner, J., Borchardt, D., Weitere, M. (2021) Limnology and Oceanography. doi: 10.1002/lno.11778

Riverine nutrient dynamics dominated by phytoplankton
In Lagrangian samplings we observed a longitudinal increase of phytoplankton biomass, a decrease of dissolved nutrient concentrations, and high rates of nitrate assimilation at low discharge in summer. Rising molar C:P ratios of seston indicated a phosphorus limitation of phytoplankton. Global radiation combined with mixing depth had a strong predictive power to explain maximum chlorophyll concentration.
Publikation


Hydromorphologic sorting of in-stream nitrogen uptake across spatial scales …

Risse-Buhl, U., Anlanger, C., Noss, C., Lorke, A., von Schiller, D., Weitere, M. (2020) Ecosystems. doi: 10.1007/s10021-020-00576-7

Hydromorphologic sorting of in-stream nitrogen uptake across spatial scales …
Whole-reach 15N ammonium injection experiments were performed to better understand the effects of hydromorphology and other environmental constraints, across three spatial scales: micro, meso and reach. Our results reveal the important role of hydromorphologic sorting of primary uptake compartments at mesoscale as a controlling factor for reach-scale N uptake in streams.
Publikation



 Vollständige Publikationsliste

Inhalt:

2022 (27)

Weiterführende Recherchen können Sie in unserem Publikationsverzeichnis durchführen.

2022 (27)

zum Inhalt

Inhalt:

2021 (35)

Weiterführende Recherchen können Sie in unserem Publikationsverzeichnis durchführen.

2021 (35)

zum Inhalt

2020 (34)

2019 (31)

2018 (19)

2017 (30)

2016 (39)

2015 (30)

2014 (22)

2013 (25)

2012 (27)

2011 (22)

2010 (26)

2009 (24)

2008 (21)

2007 (31)

2006 (35)

2005 (34)

2004 (47)

2003 (32)

2002 (36)

2001 (25)

2000 (26)

1999 (17)

1998 (29)

1997 (9)

1996 (1)