Catalytic Biofilms Group


Research Focus:

Biofilms are microbial communities growing attached at the interphase of aqueous systems. They are well known for causing problems in the medical and technical area due to their persistence against antibiotics or other bactericides leading to severe infections or efficiency losses. Our aim is the utilization of such naturally immobilized microbes as biocatalysts in continuous flow-through reactor systems, by turning their “problematic” characteristics into a benefit for catalysis. To achieve this goal it is essential to follow an interdisciplinary approach combining engineering and natural sciences. It is equally important to address biological questions like biofilm growth behavior, structure and physiology, as well as technical questions like reactor configuration, mass transfer issues and scale up. Therefore the `Catalytic Biofilms’ group is a team of biologists, biochemists and engineers, working on various questions related to the applicability of bacterial biofilms for biocatalysis. For more information please refer to the different topics.


Index:

2019 (4)
2018 (2)
2017 (3)
2016 (3)
2015 (4)

You could use our publication index for further requests.

2019 (4)

  • David, C., Schmid, A., Bühler, K. (2019):
    Cellular physiology controls photoautotrophic production of 1,2‐propanediol from pools of CO2 and glycogen
    Biotechnol. Bioeng. 116 (4), 882 - 892
    full text (url)
  • Heuschkel, I., Hoschek, A., Schmid, A., Bühler, B., Karande, R., Bühler, K. (2019):
    Data on mixed trophies biofilm for continuous cyclohexane oxidation to cyclohexanol using Synechocystis sp. PCC 6803
    Data in Brief 25 , art. 104059
    full text (url)
  • Heuschkel, I., Hoschek, A., Schmid, A., Bühler, B., Karande, R., Bühler, K. (2019):
    Mixed-trophies biofilm cultivation in capillary reactors
    MethodsX 6 , 1822 - 1831
    full text (url)
  • Hoschek, A., Heuschkel, I., Schmid, A., Bühler, B., Karande, R., Bühler, K. (2019):
    Mixed-species biofilms for high-cell-density application of Synechocystis sp. PCC 6803 in capillary reactors for continuous cyclohexane oxidation to cyclohexanol
    Bioresour. Technol. 282 , 171 - 178
    full text (url)
to index

2018 (2)

  • David, C., Schmid, A., Adrian, L., Wilde, A., Bühler, K. (2018):
    Production of 1,2-propanediol in photoautotrophic Synechocystis is linked to glycogen turn-over
    Biotechnol. Bioeng. 115 (2), 300 - 311
    final draft (pdf)
  • Karande, R., Salamanca, D., Schmid, A., Buehler, K. (2018):
    Biocatalytic conversion of cycloalkanes to lactones using an in-vivo cascade in Pseudomonas taiwanensis VLB120
    Biotechnol. Bioeng. 115 (2), 312 - 320
    final draft (pdf)
to index

2017 (3)

  • Halan, B., Vassilev, I., Lang, K., Schmid, A., Buehler, K. (2017):
    Growth of Pseudomonas taiwanensis VLB120ΔC biofilms in the presence of n-butanol
    Microb. Biotechnol. 10 (4), 745 - 755
    full text (url)
  • Schmutzler, K., Kupitz, K., Schmid, A., Buehler, K. (2017):
    Hyperadherence of Pseudomonas taiwanensis VLB120ΔC increases productivity of (S)-styrene oxide formation
    Microb. Biotechnol. 10 (4), 735 - 744
    full text (url)
  • Willrodt, C., Halan, B., Karthaus, L., Rehdorf, J., Julsing, M.K., Buehler, K., Schmid, A. (2017):
    Continuous multistep synthesis of perillic acid from limonene by catalytic biofilms under segmented flow
    Biotechnol. Bioeng. 114 (2), 281 - 290
    final draft (pdf)
to index

2016 (3)

  • Halan, B., Karande, R., Buehler, K., Schmid, A. (2016):
    Catalytic Pseudomonas taiwanensis VLB120ΔC biofilms thrive in a continuous pure styrene generated by multiphasic segmented flow in a capillary microreactor
    J. Flow Chem. 6 (1), 39 - 42
    full text (url)
  • Karande, R., Schmid, A., Buehler, K. (2016):
    Applications of multiphasic microreactors for biocatalytic reactions
    Org. Process Res. Dev. 20 (2), 361 - 370
    full text (url)
  • Schmutzler, K., Kracht, O.N., Schmid, A., Buehler, K. (2016):
    Trophic regulation of autoaggregation in Pseudomonas taiwanensis VLB120
    Appl. Microbiol. Biotechnol. 100 (1), 347 - 360
    full text (url)
to index

2015 (4)

  • David, C., Bühler, K., Schmid, A. (2015):
    Stabilization of single species Synechocystis biofilms by cultivation under segmented flow
    J. Ind. Microbiol. Biotechnol. 42 (7), 1083 - 1089
    full text (url)
  • Karande, R., Debor, L., Salamanca, D., Bogdahn, F., Engesser, K.-H., Buehler, K., Schmid, A. (2015):
    Continuous cyclohexane oxidation to cyclohexanol using a novel cytochrome P450 monooxygenase from Acidovorax sp. CHX100 in recombinant P. taiwanensis VLB120 biofilms
    Biotechnol. Bioeng. 113 (1), 52 - 61
    full text (url)
  • Lang, K., Buehler, K., Schmid, A. (2015):
    Multistep synthesis of (S)-3-hydroxyisobutyric acid from glucose using Pseudomonas taiwanensis VLB120 B83 T7 catalytic biofilms
    Adv. Synth. Catal. 357 (8), 1919 - 1927
    full text (url)
  • Schmutzler, K., Schmid, A., Buehler, K. (2015):
    A three-step method for analysing bacterial biofilm formation under continuous medium flow
    Appl. Microbiol. Biotechnol. 99 (14), 6035 - 6047
    full text (url)
to index

Under construction

Studiengang Bioverfahrenstechnik

Vorlesung: Mikrobiologie für Verfahrenstechniker(innen) VNT-47
Dozentin: Prof. Katja Bühler
SS 2019

Beginn: 04.04.2019 (wöchentlich donnerstags, 13:00 Uhr bis 14:30 Uhr)
Wo: TU Dresden, ZINT Campus (Bergstrasse 120), ZIN/025/U


Diese Vorlesung baut auf der Veranstaltung "Allgemeine Mikrobiologie" auf. Sie behandelt im ersten Teil den Abbau organischer und anorganischer Verbindungen und gibt einen Überblick über die häufigsten Gärungstypen immer im Zusammenhang mit biotechnologischen Anwendungen. Im zweiten Teil geht darum zu verstehen, wie man von einer Idee zu einem gewünschten Produkt kommt. Es werden Grundlagen in bakterieller Genetik vermittelt und aktuelle Techniken der Gentechnik behandelt.


Vorlesungsskripte und Lehrmaterialien
----------------------------------------------------

Vorlesung: Allgemeine Mikrobiologie VNT-44
Dozentin:   Prof. Katja Bühler

Beginn: derzeit nur im Wintersemester
Wo:       TU Dresden, ZINT Campus (Bergstrasse 120), ZIN/120/H

Inhalte der Vorlesung sind die Grundlagen der Mikrobiologie. Dies umfasst: Aufbau von Bakterien, Viren und Pilzen, Ernährungsweisen, Wachstum, zentraler Kohlenstoff- und Energiemetabolismus, Organisation der Zellfabrik, Transportprozesse und einen Überblick über die biotechnologischen Anwendungsgebiete von Mikroorganismen.


Vorlesungsskripte und Lehrmaterialien

---------------------------------------------------

Vorlesung: Energie-Biotechnologie MW5 15/615
Dozentin:   Prof. Katja Bühler

Beginn: derzeit nur im Wintersemester
Wo:       TU Dresden, ZINT Campus (Bergstrasse 120), ZIN/120/H

In dieser Veranstaltung werden aktuelle Verfahren zur Energiegewinnung mittels Biotechnologie vorgestellt und kritisch diskutiert. Ziel ist es, eine Übersicht über diesen Bereich der Biotechnologie zu bekommen und die Verfahren bezüglich der Machbarkeit und ökonomischen sowie ökologischen Konsequenzen richtig zu bewerten.


Vorlesungsskripte und Lehrmaterialien

----------------------------------------------------


Vorlesung: Kontinuierliche Bioprozesse
Dozentin:   Dr. Rohan Karande
WS 2018/ 2019

Beginn: derzeit nur im WS
Wo: TU Dresden, ZINT Campus (Bergstrasse 120), ZIN/120/H



Vorlesungsskripte und Lehrmaterialien

There are always projects available within our research themes (see below). Projects are interesting for students with a background in biotechnology, biochemical engineering, molecular biology or related.


Utilizing microorganisms organisms for the production of value added compounds
In this research field we are engineering bacteria towards synthesis of interesting chemicals. Respective organisms may either grow autotrophic utilizing CO2 as carbon source or heterotrophic using organic compounds (like glucose) as carbon source. Two basic routes are followed: Either the compound of choice is directly utilized from the growth substrate (fermentation), or the organisms are supplied with an additional substrate, which is transformed to a specific product (biotransformation).


Designing biofilms for continuous bioprocesses
In this research field we are utilizing surface attached bacteria (biofilms) as biocatalysts for continuous bioprocesses. Research questions to address are related to the biofilm response towards external stimuli, and the resulting architectural plasticity of the biofilm community. Especially stimuli connected to technical production systems, e.g. hydrodynamic conditions, substrate and/or product toxicity, etc., are in the focus of our work.


We offer challenging projects, careful supervision, excellent infrastructure and team spirit. Please feel free to contact us and ask for further details!