Dr. Anett Georgi
Funktion und Kontakt

Dr. Anett Georgi
AG-Leiterin Advanced Adsorption und Oxidation
Department Technische Biogeochemie
Helmholtz-Zentrum für Umweltforschung GmbH - UFZ
Permoserstr. 15
04318 Leipzig, Germany
Tel: +49 341 6025 1405
anett.georgi@ufz.de
Beruflicher Werdegang
seit 2024
Leitung der Arbeitsgruppe Advanced Adsorption und Oxidation im Department Technische Biogeochemie am Helmholtz-Zentrum für Umweltforschung - UFZ
seit 2016
Leitung der Arbeitsgruppe Umweltkatalyse - Oxidationsprozesse im Department Technische Umweltchemie am Helmholtz-Zentrum für Umweltforschung - UFZ
seit 2001
wissenschaftliche Mitarbeiterin im Department Technische Umweltchemie am UFZ
1997-2001
Postdoc im Department Technische Umweltchemie am UFZ
1997
Forschungsaufenthalt Carleton University, Ottawa
1997
Promotion in Chemie, Universität Leipzig, Thema: “Wechselwirkungen von hydrophoben organischen Verbindungen mit gelösten Huminstoffen”
1994-1997
Promotionsstipendium der Deutschen Bundesstiftung Umwelt, Doktorandin am UFZ
1989-1994
Forschungsschwerpunkte & Aktuelle Projekte
- Oxidative Wasserreinigung
- Entfernung von PFAS und PM(T)-Stoffen aus Wasser (FABEKO, ZeoPFAS)
- Zeolithe als Adsorbentien und Katalysatoren zur Wasserreinigung (ZeoPFAS)
- Elektrosorption zur Entfernung von ionischen organischen Spurenstoffen aus Wasser (2D4PFAS)
- Wasserqualität in der Schwammstadt (CLEANER)
- Dezentrales Wasser-Recycling (RegioWasser)
Funktionen
seit 2022 Editor Journal of Hazardous Materials
seit 2022 Mitglied im Fachausschuss Persist Mobile and Toxic Compounds der GdCh
Publikationen ab 2010
Tree infiltration trenches in the city of Leipzig—Experiences from four years of operation
Land 14 (7), art. 1315 10.3390/land14071315
Towards a better understanding of sorption of persistent and mobile contaminants to activated carbon: Applying data analysis techniques with experimental datasets of limited size
Water Res. 274 , art. 123032 10.1016/j.watres.2024.123032
Generating colloidal Fe/C composites via hydrothermal carbonization – A critical study
Sep. Purif. Technol. 335 , art. 126082 10.1016/j.seppur.2023.126082
A guide for JHM authors focusing on advanced oxidation and reduction processes for environmental applications
J. Hazard. Mater. 476 , art. 135263 10.1016/j.jhazmat.2024.135263
Gründächer im urbanen Raum und ihre Ökosystemleistungen
In: Kabisch, S., Rink, D., Banzhaf, E. (Hrsg.)
Die resiliente Stadt: Konzepte, Konflikte, Lösungen
Springer Spektrum, Berlin, Heidelberg, S. 165 - 180 10.1007/978-3-662-66916-7_11
A deep insight into perfluorooctanoic acid photodegradation using metal ion-exchanged zeolites
ACS ES&T Eng. 4 (3), 748 - 757 10.1021/acsestengg.3c00462
In situ grown single-atom cobalt on carbon nanofibers for efficient adsorptive removal of antibiotics: Performance and mechanisms understanding
Chem. Eng. J. 499 , art. 156594 10.1016/j.cej.2024.156594
Should transformation products change the way we manage chemicals?
Environ. Sci. Technol. 58 (18), 7710 - 7718 10.1021/acs.est.4c00125
Is sorption technology fit for the removal of persistent and mobile organic contaminants from water?
Sci. Total Environ. 880 , art. 163343 10.1016/j.scitotenv.2023.163343
Bottom-up synthesis of de-functionalized and dispersible carbon spheres as colloidal adsorbent
Int. J. Mol. Sci. 24 (4), art. 3831 10.3390/ijms24043831
Fe-zeolites for the adsorption and oxidative degradation of nitroaromatic compounds in water
J. Hazard. Mater. 459 , art. 132125 10.1016/j.jhazmat.2023.132125
Fe-zeolite as on-site regenerable adsorber for chlorohydrocarbons in groundwater – from laboratory to pilot test
Chem. Ing. Tech. 95 (12), 1999 - 2007 10.1002/cite.202300096
Electrosorption of organic compounds: State of the art, challenges, performance, and perspectives
Chem. Eng. J. 471 , art. 144354 10.1016/j.cej.2023.144354
Uniform and dispersible carbonaceous microspheres as quasi-liquid sorbent
Chemosphere 307, Part 4 , art. 136079 10.1016/j.chemosphere.2022.136079
PFAS – eine Herausforderung für die Umwelttechnologie
Mitteilungen der Fachgruppe Umweltchemie und Ökotoxikologie / Gesellschaft Deutscher Chemiker 28 (2), 53 - 57
Editorial: Current and future trends in adsorption for environmental separations
J. Hazard. Mater. 433 , art. 128776 10.1016/j.jhazmat.2022.128776
Enhanced degradation of perfluorooctanoic acid by heat-activated persulfate in the presence of zeolites
Chem. Eng. J. 429 , art. 132500 10.1016/j.cej.2021.132500
Efficient removal of trifluoroacetic acid from water using surface-modified activated carbon and electro-assisted desorption
J. Hazard. Mater. 436 , art. 129051 10.1016/j.jhazmat.2022.129051
Electro-assisted removal of polar and ionic organic compounds from water using activated carbon felts
Chem. Eng. J. 433, Part 2 , art. 133544 10.1016/j.cej.2021.133544
Mechanistic insights into fast adsorption of perfluoroalkyl substances on carbonate-layered double hydroxides
J. Hazard. Mater. 408 , art. 124815 10.1016/j.jhazmat.2020.124815
Photodegradation of perfluorooctanesulfonic acid on Fe-zeolites in water
Environ. Sci. Technol. 55 (1), 614 - 622 10.1021/acs.est.0c04558
Fenton-like oxidation of phenol with in-situ generated hydrogen peroxide and Pd/Fe-zeolite catalysts
Water-Energy Nexus 4 , 95 - 102 10.1016/j.wen.2021.06.001
What is specific in adsorption of perfluoroalkyl acids on carbon materials?
Chemosphere 273 , art. 128520 10.1016/j.chemosphere.2020.128520
Controlling adsorption of perfluoroalkyl acids on activated carbon felt by means of electrical potentials
Chem. Eng. J. 416 , art. 129070 10.1016/j.cej.2021.129070
Adsorption of polar and ionic organic compounds on activated carbon: Surface chemistry matters
Sci. Total Environ. 794 , art. 148508 10.1016/j.scitotenv.2021.148508
Kolloidale Aktivkohle für die In-situ-Sanierung von PFAS-kontaminierten Grundwasserleitern
altlasten spektrum 29 (6), 232 - 237 10.37307/j.1864-8371.2020.06.04
H/D-isotope fractionation due to aqueous phase diffusion – Deuterated hydrocarbons revisited
Chemosphere 258 , art. 127357 10.1016/j.chemosphere.2020.127357
Interaction of zero-valent iron and carbonaceous materials for reduction of DDT
Chemosphere 253 , art. 126712 10.1016/j.chemosphere.2020.126712
Degradation of perfluorooctanoic acid adsorbed on Fe-zeolites with molecular oxygen as oxidant under UV-A irradiation
Appl. Catal. B-Environ. 278 , art. 119283 10.1016/j.apcatb.2020.119283
Understanding the effect of carbon surface chemistry on adsorption of perfluorinated alkyl substances
Chem. Eng. J. 381 , art. 122689 10.1016/j.cej.2019.122689
Comment on "Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solution", published by Azizian et al. [Chemical physics 513 (2018) 99–104]
Chem. Phys. 517 , 265 - 267 10.1016/j.chemphys.2018.10.007
NZVI synthesis and characterization
In: Phenrat, T., Lowry, G. (eds.)
Nanoscale zerovalent iron particles for environmental restoration : from fundamental science to field scale engineering applications
Springer International Publishing, Cham, p. 45 - 95 10.1007/978-3-319-95340-3_2
Sulfidation of ZVI/AC composite leads to highly corrosion-resistant nanoremediation particles with extended life-time
Sci. Total Environ. 665 , 235 - 245 10.1016/j.scitotenv.2019.02.136
Comment on "Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review, published by Tran et al. [Water Research 12, 2017, 88-116]"
Water Res. 129 , 520 - 521 10.1016/j.watres.2017.09.055
Isotope fractionation in phase-transfer processes under thermodynamic and kinetic control – Implications for diffusive fractionation in aqueous solution
Sci. Total Environ. 610–611 , 495 - 502 10.1016/j.scitotenv.2017.08.063
Taking nanotechnological remediation processes from lab scale to end user applications for the restoration of a clean environment. NanoRem project nr. 309517, EU, 7th FP, NMP.2012.1.2 Generalized guideline for application of nanoremediation
In: Braun, J. (ed.)
European Union, Luxembourg, VI, 82 pp.
Zeolites as recyclable adsorbents/catalysts for biogas upgrading: Removal of octamethylcyclotetrasiloxane
Chem. Eng. J. 307 , 820 - 827 10.1016/j.cej.2016.09.017
Suspension stability and mobility of Trap-Ox Fe-zeolites for in-situ nanoremediation
J. Colloid Interface Sci. 501 , 311 - 320 10.1016/j.jcis.2017.04.037
Comment on vapor pressure isotope effects in halogenated organic compounds and alcohols dissolved in water
Anal. Chem. 89 (19), 10637 - 10638 10.1021/acs.analchem.7b02574
What controls selectivity of hydroxyl radicals in aqueous solution? Indications for a cage effect
J. Phys. Chem. A 121 (41), 7947 - 7955 10.1021/acs.jpca.7b05782
Isotope fractionation of benzene during partitioning – Revisited
Chemosphere 168 , 508 - 513 10.1016/j.chemosphere.2016.11.029
Efforts for long-term protection of palladium hydrodechlorination catalysts
Appl. Catal. B-Environ. 186 , 204 - 211 10.1016/j.apcatb.2015.12.043
Accelerated catalytic Fenton reaction with traces of iron: an Fe−Pd-multicatalysis approach
Environ. Sci. Technol. 50 (11), 5882 - 5891 10.1021/acs.est.6b01049
Fluorescence labelling as tool for zeolite particle tracking in nanoremediation approaches
Sci. Total Environ. 550 , 820 - 826 10.1016/j.scitotenv.2016.01.009
Taking nanotechnological remediation processes from lab scale to end user applications for the restoration of a clean environment. NanoRem project nr. 309517, EU, 7th FP, NMP.2012.1.2 WP3: Design, improvement and optimized production of nanoparticles - Non-ZVI and composite nanoparticles. DL 3.3 Assessment of nanoparticle performance for the removal of contaminants - Non-ZVI and composite nanoparticles
European Union, Luxembourg, VII, 43 pp.
Taking nanotechnological remediation processes from lab scale to end user applications for the restoration of a clean environment. NanoRem project nr. 309517, EU, 7th FP, NMP.2012.1.2 WP4: Mobility and fate of nanoparticles. DL 4.2: Stability, mobility, delivery and fate of optimized NPs under field relevant conditions
European Union, Luxembourg, IX, 80 pp.
A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater
J. Contam. Hydrol. 181 , 59 - 68 10.1016/j.jconhyd.2015.03.009
Comment on the German draft legislation on hydraulic fracturing: the need for an accurate state of knowledge and for independent scientific research
Environ. Sci. Technol. 49 (11), 6367 - 6369 10.1021/acs.est.5b01921
Colloidal activated carbon for in-situ groundwater remediation — Transport characteristics and adsorption of organic compounds in water-saturated sediment columns
J. Contam. Hydrol. 179 , 76 - 88 10.1016/j.jconhyd.2015.05.002
Chemikalien beim Fracking zur Gewinnung unkonventioneller Erdgasressourcen
Die Aktuelle Wochenschau (Woche 16, 16.4.2014), 1 - 5
Comments on “Reuse of semiconductor wastewater using reverse osmosis and metal-immobilized catalyst-based advanced oxidation process”
Ind. Eng. Chem. Res. 53 (48), 18585 - 18586 10.1021/ie504255n
LaFeO3 and BiFeO3 perovskites as nanocatalysts for contaminant degradation in heterogeneous Fenton-like reactions
Chem. Eng. J. 239 , 322 - 331 10.1016/j.cej.2013.11.025
Natural and synthetic zeolites in adsorption/oxidation processes to remove surfactant molecules from water
Sep. Purif. Technol. 127 , 1 - 9 10.1016/j.seppur.2014.02.021
Carbo-Iron – ein maßgeschneidertes Reagenz zur In-situ-Grundwassersanierung remediation
Chem. Ing. Tech. 85 (8), 1302 - 1311 10.1002/cite.201300009
Hydrophobic Fe-zeolites for removal of MTBE from water by combination of adsorption and oxidation
Environ. Sci. Technol. 47 (5), 2353 - 2360 10.1021/es303885y
Nanostructured Fe-zeolite and orthoferrite nanoparticles: fenton-like heterogeneous catalysts for oxidation of water contaminants
In: Dey, T. (ed.)
Nanotechnology for water purification
Brown Walker Press, Boca Raton, FL, p. 89 - 116
Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH
Appl. Catal. B-Environ. 125 (August 2012), 51 - 58 10.1016/j.apcatb.2012.05.022
Carbo-Iron – An Fe/AC composite – as alternative to nano-iron for groundwater treatment
Water Res. 46 (12), 3817 - 3826 10.1016/j.watres.2012.04.013
In-situ generation of sorption and reaction barriers using colloidal sorbents and sorbent-carried nano-iron
In: Dey, T. (ed.)
Nanotechnology for water purification
Brown Walker Press, Boca Raton, FL, p. 71 - 88
Influence of dissolved humic substances on the mass transfer of organic compounds across the air–water interface
Chemosphere 86 (2), 138 - 143 10.1016/j.chemosphere.2011.09.055
Sorption-induced effects of humic substances on mass transfer of organic pollutants through aqueous diffusion boundary layers: the example of water/air exchange
Environ. Sci. Technol. 46 (4), 2196 - 2203 10.1021/es2038382
Critical evaluation of the 2D-CSIA scheme for distinguishing fuel oxygenate degradation reaction mechanisms
Environ. Sci. Technol. 46 (9), 4757 - 4766 10.1021/es2036543
Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions—Influence of Fe(II)/Fe(III) ratio on catalytic performance
J. Hazard. Mater. 241-242 , 433 - 440 10.1016/j.jhazmat.2012.09.068
Stabilization of potassium permanganate particles with manganese dioxide
Chemosphere 86 (8), 783 - 788 10.1016/j.chemosphere.2011.11.005
Photostability and toxicity of pentachlorophenol and phenanthrene
J. Hazard. Mater. 189 (1-2), 235 - 240 10.1016/j.jhazmat.2011.02.024
Eisenbasierte Nanopartikel und Nanokompositstrukturen zur Schadstoffentfernung aus Grund- und Abwässern
WING.DE 2011 – Tagungsband : Werkstoffe gestalten Zukunft, 4.-6. Oktober 2011 Berlin
Bundesministerium für Bildung und Forschung (BMBF), Berlin, S. 86 - 88
Indications of the reactive species in a heterogeneous Fenton-like reaction using Fe-containing zeolites
Appl. Catal. A-Gen. 398 (1-2), 44 - 53 10.1016/j.apcata.2011.03.005
Nanopartikel und ISCO - Einsatzgrenzen und Wirksamkeit
Altlastensymposium 2011, Magdeburg, 24.-25.03.2011 : Tagungsband
Ingenieurtechnischer Verband für Altlastenmanagement und Flächenrecycling e.V. (ITVA), Berlin, 111 - 120
Kinetics of desorption of organic compounds from dissolved organic matter
Environ. Sci. Technol. 45 (22), 10013 - 10019 10.1021/es2023835
Chlorophenol degradation using a one-pot reduction-oxidation process
Appl. Catal. B-Environ. 104 (1-2), 161 - 168 10.1016/j.apcatb.2011.02.017
Fe-zeolites as catalysts for wet peroxide oxidation of organic groundwater contaminants: mechanistic studies and applicability tests
Sep. Sci. Technol. 45 (11), 1579 - 1586 10.1080/01496395.2010.487466
Hydrophobic zeolites for removal of organic groundwater contaminants-adsorption properties and regeneration
In: Sorial, G.A., Hong, J. (eds.)
Proceedings 5th International Conference on Environmental Science and Technology 2010 (ICEST 2010), Houston, 12-16th July 2010
Vol. 1
p. 214 - 220
Katalyse mit Nanopartikeln in Wasser - Potenzial und Grenzen
In: Koschitzky, H.-P., Braun, J. (Hrsg.)
In-situ-Sanierung, Stand und Entwicklung, Nano und ISCO
Mitteilungen / Institut für Wasserbau 195
Universität Stuttgart, Stuttgart, S. 41 - 50
Carbo-Iron®: eine Alternative zu Nano-Eisen - Schwerpunkt im BMBF-Projekt Fe-Nanosit
In: Koschitzky, H.-P., Braun, J. (Hrsg.)
In-situ-Sanierung, Stand und Entwicklung, Nano und ISCO
Mitteilungen / Institut für Wasserbau 195
Universität Stuttgart, Stuttgart, S. 69 - 77