Dr. Anett Georgi
Funktion und Kontakt

Dr. Anett Georgi
AG-Leiterin Advanced Adsorption und Oxidation
Department Technische Biogeochemie
Helmholtz-Zentrum für Umweltforschung GmbH - UFZ
Permoserstr. 15
04318 Leipzig, Germany
Tel: +49 341 6025 1405
anett.georgi@ufz.de
Beruflicher Werdegang
seit 2024
Leitung der Arbeitsgruppe Advanced Adsorption und Oxidation im Department Technische Biogeochemie am Helmholtz-Zentrum für Umweltforschung - UFZ
seit 2016
Leitung der Arbeitsgruppe Umweltkatalyse - Oxidationsprozesse im Department Technische Umweltchemie am Helmholtz-Zentrum für Umweltforschung - UFZ
seit 2001
wissenschaftliche Mitarbeiterin im Department Technische Umweltchemie am UFZ
1997-2001
Postdoc im Department Technische Umweltchemie am UFZ
1997
Forschungsaufenthalt Carleton University, Ottawa
1997
Promotion in Chemie, Universität Leipzig, Thema: “Wechselwirkungen von hydrophoben organischen Verbindungen mit gelösten Huminstoffen”
1994-1997
Promotionsstipendium der Deutschen Bundesstiftung Umwelt, Doktorandin am UFZ
1989-1994
Forschungsschwerpunkte & Aktuelle Projekte
- Oxidative Wasserreinigung
- Entfernung von PFAS und PM(T)-Stoffen aus Wasser (FABEKO, ZeoPFAS)
- Zeolithe als Adsorbentien und Katalysatoren zur Wasserreinigung (ZeoPFAS)
- Elektrosorption zur Entfernung von ionischen organischen Spurenstoffen aus Wasser (2D4PFAS)
- Wasserqualität in der Schwammstadt (CLEANER)
- Dezentrales Wasser-Recycling (RegioWasser)
Funktionen
seit 2022 Editor Journal of Hazardous Materials
seit 2022 Mitglied im Fachausschuss Persist Mobile and Toxic Compounds der GdCh
Publikationen ab 2010
Towards a better understanding of sorption of persistent and mobile contaminants to activated carbon: Applying data analysis techniques with experimental datasets of limited size
Water Res. 274 , art. 123032 10.1016/j.watres.2024.123032
Generating colloidal Fe/C composites via hydrothermal carbonization – A critical study
Sep. Purif. Technol. 335 , art. 126082 10.1016/j.seppur.2023.126082
A guide for JHM authors focusing on advanced oxidation and reduction processes for environmental applications
J. Hazard. Mater. 476 , art. 135263 10.1016/j.jhazmat.2024.135263
Gründächer im urbanen Raum und ihre Ökosystemleistungen
In: Kabisch, S., Rink, D., Banzhaf, E. (Hrsg.)
Die resiliente Stadt: Konzepte, Konflikte, Lösungen
Springer Spektrum, Berlin, Heidelberg, S. 165 - 180 10.1007/978-3-662-66916-7_11
A deep insight into perfluorooctanoic acid photodegradation using metal ion-exchanged zeolites
ACS ES&T Eng. 4 (3), 748 - 757 10.1021/acsestengg.3c00462
In situ grown single-atom cobalt on carbon nanofibers for efficient adsorptive removal of antibiotics: Performance and mechanisms understanding
Chem. Eng. J. 499 , art. 156594 10.1016/j.cej.2024.156594
Should transformation products change the way we manage chemicals?
Environ. Sci. Technol. 58 (18), 7710 - 7718 10.1021/acs.est.4c00125
Is sorption technology fit for the removal of persistent and mobile organic contaminants from water?
Sci. Total Environ. 880 , art. 163343 10.1016/j.scitotenv.2023.163343
Bottom-up synthesis of de-functionalized and dispersible carbon spheres as colloidal adsorbent
Int. J. Mol. Sci. 24 (4), art. 3831 10.3390/ijms24043831
Fe-zeolites for the adsorption and oxidative degradation of nitroaromatic compounds in water
J. Hazard. Mater. 459 , art. 132125 10.1016/j.jhazmat.2023.132125
Fe-zeolite as on-site regenerable adsorber for chlorohydrocarbons in groundwater – from laboratory to pilot test
Chem. Ing. Tech. 95 (12), 1999 - 2007 10.1002/cite.202300096
Electrosorption of organic compounds: State of the art, challenges, performance, and perspectives
Chem. Eng. J. 471 , art. 144354 10.1016/j.cej.2023.144354
Uniform and dispersible carbonaceous microspheres as quasi-liquid sorbent
Chemosphere 307, Part 4 , art. 136079 10.1016/j.chemosphere.2022.136079
PFAS – eine Herausforderung für die Umwelttechnologie
Mitteilungen der Fachgruppe Umweltchemie und Ökotoxikologie / Gesellschaft Deutscher Chemiker 28 (2), 53 - 57
Editorial: Current and future trends in adsorption for environmental separations
J. Hazard. Mater. 433 , art. 128776 10.1016/j.jhazmat.2022.128776
Enhanced degradation of perfluorooctanoic acid by heat-activated persulfate in the presence of zeolites
Chem. Eng. J. 429 , art. 132500 10.1016/j.cej.2021.132500
Efficient removal of trifluoroacetic acid from water using surface-modified activated carbon and electro-assisted desorption
J. Hazard. Mater. 436 , art. 129051 10.1016/j.jhazmat.2022.129051
Electro-assisted removal of polar and ionic organic compounds from water using activated carbon felts
Chem. Eng. J. 433, Part 2 , art. 133544 10.1016/j.cej.2021.133544
Mechanistic insights into fast adsorption of perfluoroalkyl substances on carbonate-layered double hydroxides
J. Hazard. Mater. 408 , art. 124815 10.1016/j.jhazmat.2020.124815
Photodegradation of perfluorooctanesulfonic acid on Fe-zeolites in water
Environ. Sci. Technol. 55 (1), 614 - 622 10.1021/acs.est.0c04558
Fenton-like oxidation of phenol with in-situ generated hydrogen peroxide and Pd/Fe-zeolite catalysts
Water-Energy Nexus 4 , 95 - 102 10.1016/j.wen.2021.06.001
What is specific in adsorption of perfluoroalkyl acids on carbon materials?
Chemosphere 273 , art. 128520 10.1016/j.chemosphere.2020.128520
Controlling adsorption of perfluoroalkyl acids on activated carbon felt by means of electrical potentials
Chem. Eng. J. 416 , art. 129070 10.1016/j.cej.2021.129070
Adsorption of polar and ionic organic compounds on activated carbon: Surface chemistry matters
Sci. Total Environ. 794 , art. 148508 10.1016/j.scitotenv.2021.148508
Kolloidale Aktivkohle für die In-situ-Sanierung von PFAS-kontaminierten Grundwasserleitern
altlasten spektrum 29 (6), 232 - 237 10.37307/j.1864-8371.2020.06.04
H/D-isotope fractionation due to aqueous phase diffusion – Deuterated hydrocarbons revisited
Chemosphere 258 , art. 127357 10.1016/j.chemosphere.2020.127357
Interaction of zero-valent iron and carbonaceous materials for reduction of DDT
Chemosphere 253 , art. 126712 10.1016/j.chemosphere.2020.126712
Degradation of perfluorooctanoic acid adsorbed on Fe-zeolites with molecular oxygen as oxidant under UV-A irradiation
Appl. Catal. B-Environ. 278 , art. 119283 10.1016/j.apcatb.2020.119283
Understanding the effect of carbon surface chemistry on adsorption of perfluorinated alkyl substances
Chem. Eng. J. 381 , art. 122689 10.1016/j.cej.2019.122689
Comment on "Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solution", published by Azizian et al. [Chemical physics 513 (2018) 99–104]
Chem. Phys. 517 , 265 - 267 10.1016/j.chemphys.2018.10.007
NZVI synthesis and characterization
In: Phenrat, T., Lowry, G. (eds.)
Nanoscale zerovalent iron particles for environmental restoration : from fundamental science to field scale engineering applications
Springer International Publishing, Cham, p. 45 - 95 10.1007/978-3-319-95340-3_2
Sulfidation of ZVI/AC composite leads to highly corrosion-resistant nanoremediation particles with extended life-time
Sci. Total Environ. 665 , 235 - 245 10.1016/j.scitotenv.2019.02.136
Comment on "Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review, published by Tran et al. [Water Research 12, 2017, 88-116]"
Water Res. 129 , 520 - 521 10.1016/j.watres.2017.09.055
Isotope fractionation in phase-transfer processes under thermodynamic and kinetic control – Implications for diffusive fractionation in aqueous solution
Sci. Total Environ. 610–611 , 495 - 502 10.1016/j.scitotenv.2017.08.063
Taking nanotechnological remediation processes from lab scale to end user applications for the restoration of a clean environment. NanoRem project nr. 309517, EU, 7th FP, NMP.2012.1.2 Generalized guideline for application of nanoremediation
In: Braun, J. (ed.)
European Union, Luxembourg, VI, 82 pp.
Zeolites as recyclable adsorbents/catalysts for biogas upgrading: Removal of octamethylcyclotetrasiloxane
Chem. Eng. J. 307 , 820 - 827 10.1016/j.cej.2016.09.017
Suspension stability and mobility of Trap-Ox Fe-zeolites for in-situ nanoremediation
J. Colloid Interface Sci. 501 , 311 - 320 10.1016/j.jcis.2017.04.037
Comment on vapor pressure isotope effects in halogenated organic compounds and alcohols dissolved in water
Anal. Chem. 89 (19), 10637 - 10638 10.1021/acs.analchem.7b02574
What controls selectivity of hydroxyl radicals in aqueous solution? Indications for a cage effect
J. Phys. Chem. A 121 (41), 7947 - 7955 10.1021/acs.jpca.7b05782
Isotope fractionation of benzene during partitioning – Revisited
Chemosphere 168 , 508 - 513 10.1016/j.chemosphere.2016.11.029
Efforts for long-term protection of palladium hydrodechlorination catalysts
Appl. Catal. B-Environ. 186 , 204 - 211 10.1016/j.apcatb.2015.12.043
Accelerated catalytic Fenton reaction with traces of iron: an Fe−Pd-multicatalysis approach
Environ. Sci. Technol. 50 (11), 5882 - 5891 10.1021/acs.est.6b01049
Fluorescence labelling as tool for zeolite particle tracking in nanoremediation approaches
Sci. Total Environ. 550 , 820 - 826 10.1016/j.scitotenv.2016.01.009
Taking nanotechnological remediation processes from lab scale to end user applications for the restoration of a clean environment. NanoRem project nr. 309517, EU, 7th FP, NMP.2012.1.2 WP3: Design, improvement and optimized production of nanoparticles - Non-ZVI and composite nanoparticles. DL 3.3 Assessment of nanoparticle performance for the removal of contaminants - Non-ZVI and composite nanoparticles
European Union, Luxembourg, VII, 43 pp.
Taking nanotechnological remediation processes from lab scale to end user applications for the restoration of a clean environment. NanoRem project nr. 309517, EU, 7th FP, NMP.2012.1.2 WP4: Mobility and fate of nanoparticles. DL 4.2: Stability, mobility, delivery and fate of optimized NPs under field relevant conditions
European Union, Luxembourg, IX, 80 pp.
A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater
J. Contam. Hydrol. 181 , 59 - 68 10.1016/j.jconhyd.2015.03.009
Comment on the German draft legislation on hydraulic fracturing: the need for an accurate state of knowledge and for independent scientific research
Environ. Sci. Technol. 49 (11), 6367 - 6369 10.1021/acs.est.5b01921
Colloidal activated carbon for in-situ groundwater remediation — Transport characteristics and adsorption of organic compounds in water-saturated sediment columns
J. Contam. Hydrol. 179 , 76 - 88 10.1016/j.jconhyd.2015.05.002
Chemikalien beim Fracking zur Gewinnung unkonventioneller Erdgasressourcen
Die Aktuelle Wochenschau (Woche 16, 16.4.2014), 1 - 5
Comments on “Reuse of semiconductor wastewater using reverse osmosis and metal-immobilized catalyst-based advanced oxidation process”
Ind. Eng. Chem. Res. 53 (48), 18585 - 18586 10.1021/ie504255n
LaFeO3 and BiFeO3 perovskites as nanocatalysts for contaminant degradation in heterogeneous Fenton-like reactions
Chem. Eng. J. 239 , 322 - 331 10.1016/j.cej.2013.11.025
Natural and synthetic zeolites in adsorption/oxidation processes to remove surfactant molecules from water
Sep. Purif. Technol. 127 , 1 - 9 10.1016/j.seppur.2014.02.021
Carbo-Iron – ein maßgeschneidertes Reagenz zur In-situ-Grundwassersanierung remediation
Chem. Ing. Tech. 85 (8), 1302 - 1311 10.1002/cite.201300009
Hydrophobic Fe-zeolites for removal of MTBE from water by combination of adsorption and oxidation
Environ. Sci. Technol. 47 (5), 2353 - 2360 10.1021/es303885y
Nanostructured Fe-zeolite and orthoferrite nanoparticles: fenton-like heterogeneous catalysts for oxidation of water contaminants
In: Dey, T. (ed.)
Nanotechnology for water purification
Brown Walker Press, Boca Raton, FL, p. 89 - 116
Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH
Appl. Catal. B-Environ. 125 (August 2012), 51 - 58 10.1016/j.apcatb.2012.05.022
Carbo-Iron – An Fe/AC composite – as alternative to nano-iron for groundwater treatment
Water Res. 46 (12), 3817 - 3826 10.1016/j.watres.2012.04.013
In-situ generation of sorption and reaction barriers using colloidal sorbents and sorbent-carried nano-iron
In: Dey, T. (ed.)
Nanotechnology for water purification
Brown Walker Press, Boca Raton, FL, p. 71 - 88
Influence of dissolved humic substances on the mass transfer of organic compounds across the air–water interface
Chemosphere 86 (2), 138 - 143 10.1016/j.chemosphere.2011.09.055
Sorption-induced effects of humic substances on mass transfer of organic pollutants through aqueous diffusion boundary layers: the example of water/air exchange
Environ. Sci. Technol. 46 (4), 2196 - 2203 10.1021/es2038382
Critical evaluation of the 2D-CSIA scheme for distinguishing fuel oxygenate degradation reaction mechanisms
Environ. Sci. Technol. 46 (9), 4757 - 4766 10.1021/es2036543
Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions—Influence of Fe(II)/Fe(III) ratio on catalytic performance
J. Hazard. Mater. 241-242 , 433 - 440 10.1016/j.jhazmat.2012.09.068
Stabilization of potassium permanganate particles with manganese dioxide
Chemosphere 86 (8), 783 - 788 10.1016/j.chemosphere.2011.11.005
Photostability and toxicity of pentachlorophenol and phenanthrene
J. Hazard. Mater. 189 (1-2), 235 - 240 10.1016/j.jhazmat.2011.02.024
Eisenbasierte Nanopartikel und Nanokompositstrukturen zur Schadstoffentfernung aus Grund- und Abwässern
WING.DE 2011 – Tagungsband : Werkstoffe gestalten Zukunft, 4.-6. Oktober 2011 Berlin
Bundesministerium für Bildung und Forschung (BMBF), Berlin, S. 86 - 88
Indications of the reactive species in a heterogeneous Fenton-like reaction using Fe-containing zeolites
Appl. Catal. A-Gen. 398 (1-2), 44 - 53 10.1016/j.apcata.2011.03.005
Nanopartikel und ISCO - Einsatzgrenzen und Wirksamkeit
Altlastensymposium 2011, Magdeburg, 24.-25.03.2011 : Tagungsband
Ingenieurtechnischer Verband für Altlastenmanagement und Flächenrecycling e.V. (ITVA), Berlin, 111 - 120
Kinetics of desorption of organic compounds from dissolved organic matter
Environ. Sci. Technol. 45 (22), 10013 - 10019 10.1021/es2023835
Chlorophenol degradation using a one-pot reduction-oxidation process
Appl. Catal. B-Environ. 104 (1-2), 161 - 168 10.1016/j.apcatb.2011.02.017
Fe-zeolites as catalysts for wet peroxide oxidation of organic groundwater contaminants: mechanistic studies and applicability tests
Sep. Sci. Technol. 45 (11), 1579 - 1586 10.1080/01496395.2010.487466
Hydrophobic zeolites for removal of organic groundwater contaminants-adsorption properties and regeneration
In: Sorial, G.A., Hong, J. (eds.)
Proceedings 5th International Conference on Environmental Science and Technology 2010 (ICEST 2010), Houston, 12-16th July 2010
Vol. 1
p. 214 - 220
Katalyse mit Nanopartikeln in Wasser - Potenzial und Grenzen
In: Koschitzky, H.-P., Braun, J. (Hrsg.)
In-situ-Sanierung, Stand und Entwicklung, Nano und ISCO
Mitteilungen / Institut für Wasserbau 195
Universität Stuttgart, Stuttgart, S. 41 - 50
Carbo-Iron®: eine Alternative zu Nano-Eisen - Schwerpunkt im BMBF-Projekt Fe-Nanosit
In: Koschitzky, H.-P., Braun, J. (Hrsg.)
In-situ-Sanierung, Stand und Entwicklung, Nano und ISCO
Mitteilungen / Institut für Wasserbau 195
Universität Stuttgart, Stuttgart, S. 69 - 77