Prof. Dr. Antonis Chatzinotas

Unsere Arbeitsgruppe und das UFZ begrüßen Bewerbungen, Studierende und Mitarbeiter:innen unabhängig von Nationalität, Religion, Geschlechtsidentifikation, sexueller Orientierung, Alter oder Behinderung. Wir glauben an vielfältige Perspektiven und Erfahrungen und wollen so ein Umfeld schaffen, das hilft, ein breites Spektrum an möglichen Lösungen für wissenschaftliche Fragen, aber auch für die Gesellschaft im Allgemeinen zu finden.

Contact

Prof. Dr. Antonis Chatzinotas
Leiter AG Mikrobielle Interaktionsökologie

Department Umweltmikrobiologie
AG Mikrobielle Interaktionsökologie
Helmholtz Zentrum für Umweltforschung - UFZ
Permoserstr. 15, 04318 Leipzig, Deutschland

Phone +49 341 235-1324
antonis.chatzinotas@ufz.de

Antonis Chatzinotas

seit 01/2020   Professor Mikrobielle Interaktionsökologie, Universität Leipzig

seit 11/2007    Leiter AG Mikrobielle Systemökologie, UFZ (umbenannt Januar 2020: Mikrobielle Interaktionsökologie)

2004 - 2007    Wissenschaftler, Helmholtz Zentrum für Umweltforschung - UFZ

1999 - 2004    Postdoktorand, EPFL Lausanne, Schweiz

1996 - 2000    Doktorand, ETHZ Zürich, Schweiz (AG Prof. J. Zeyer)

11/12 1995     Wissenschaftlicher Aufenthalt, University of Otago, Dunedin, Neuseeland

1989 - 1995    Studium Biologie, Ludwig-Maximilians-Universität München (Diplomarbeit AG Prof. A. Hartmann, Helmholtz Zentrum München)


Research interests

I am interested in understanding the diversity and ecology of microbial communities (bacteria, protists, viruses, predatory bacteria) in natural and engineered ecosystems (soil, freshwater, wastewater; host associated). My research addresses amongst others

(i) the response of microbial communities and functions to environmental change and human activities,
(ii) the interactions within and between different trophic levels (bacteria, protist, viruses, predatory bacteria),
(iii) the evaluation of ecological and evolutionary theories in microbial ecology.

The aim of these studies is not only to increase our knowledge regarding the phylogenetic and functional diversity of microorganisms, but also to better understand the role of interactions between different trophic levels (bacteria, protists, viruses, and plants) for ecosystem functioning and adaptation under changing environmental conditions. Tracking and conserving of biodiversity e.g., in soil could be a key to biodiversity protection strategies.

In the course of the COVID19-pandemic we shifted some of our capacities towards the monitoring of SARS-CoV-2 RNA in wastewater as an early warning system for the spread of SARS-CoV-2 in a population.


Microbial diversity and functioning

We are studying how environmental parameters and human activities affect microbial communities (bacteria, protist, phages, predatory bacteria), their functions and distribution in ecosystems. These impacts include e.g. industrial pollution, land use gradients or extrem weather events. Analyses are mainly based on cultivation-independent methods including high throughput sequencing and omics-approaches, but requires in some cases also alternative cultivation approaches. Functional bacterial groups involved e.g. in the degradation of pollutants are identified by applying 13C-labelled substrates and stable isotope probing (SIP).

Example Publications
Guerra et al. (2021): Tracking, targeting, and  conserving soil biodiversity. Science, 371: 239-241
Kallies et al. (2019): Evaluation of sequencing library preparation protocols for viral metagenomic analsis form pristine aquifer groundwaters. Viruses 11 (6), 484
Cohen et al (2019): Bacteria and microeukaryotes are differently segregated in sympatric wastewater microhabitats. Environmental Microbiology 21: 1757-1770



Ecology and evolution of interactions within and between different trophic levels

Understanding the interactions within the same and between different trophic levels is required for a full comprehension of of microbial communities and processes, particularly in response to changes in their abiotic and biotic environment. Next to working on field sites, we establish microbial model systems in the lab to address key ecological principles in the context of climate change or co-evolutionary dynamics. Such model systems enable a high degree of replication and experimental control and are helpful to test the applicability of ecological and evolutionary concepts and theories.

Example Publications
Karakoç et al. (2020): Diversity and coexistence are influenced by time-dependent species interactions in a predator-prey system. Ecology Letters 23:983-993
Hofmann et al. (2019): Temperature and stoichiometric dependence of phytoplankton traits. Ecology 100 (12): e02875
Fetzer et al. (2015): The extent of functional redundancy changes as species' roles shift in different environments. PNAS, 112: 14888-14893




Ongoing research cooperations

see Working Group Microbial Interaction Ecology

Publications