Ecological Theory and Concepts
A central element of the department's research is the development and testing of ecological theories and concepts. Stability concepts underpin most of our projects, for example the viability of small populations, the sustainability of rainforest harvesting regimes, or the resilience of ecological and socio-ecological systems. Another focus is the ecological consequences of disturbance events and multiple stressors.
We are integrating modelling and analysis of data from experiments or observations to develop theories. For example, experiments on microbial communities have been used to elucidate the role of apparently redundant species in species-rich communities: they may become key species as environmental conditions become more severe (Fetzer et al., 2015). Data from detailed inventories of tropical forests are used to derive parameters of aggregated coexistence models via point-pattern analyses and new integration approaches based on so-called transfer functions (Wiegand et al., 2021).
Theory development is a key issue for agent-based models, where predictive theories of individual behaviour are both needed and developed in order to develop and test system-level theory (Grimm et al., 2024). Another key issue is the development of theory that can deal with the role of multiple stressors. This requires the development of concepts such as causality (Johansson et al., 2024), resilience (Weise et al., 2020) or buffering mechanisms (Milles et al., 2023).
Theory is also used to guide the identification and interpretation of patterns in global datasets. For example, (Taubert et al., 2018) used data on the size distribution of forest fragments to identify power laws suggesting that the world's forests are approaching a tipping point with respect to fragmentation.

We are also increasingly integrating modelling and analyses of data from experiments or observations to test theories. For example, using experiments with microbial communities, the role of seemingly redundant species in species-rich communities could be elucidated: they can become key species when environmental conditions are getting harsher (Fetzer et al. 2015; see Figure).
An underlying theme of virtually all theories and concepts in the Department's research is the multiple patterns or regularities generated by ecological systems at different scales and hierarchical levels.These patterns are key to unravelling the internal organisation of ecological systems ("pattern-oriented modelling", Grimm et al., 2005).
Selected Publications
- Grimm, V., Berger, U., Meyer, M., Lorscheid, I. (2024):
Theory for and from agent-based modelling: Insights from a virtual special issue and a vision
Environ. Modell. Softw. 178 , art. 106088 10.1016/j.envsoft.2024.106088 - Johansson, L.-G., Banitz, T., Grimm, V., Hertz, T., Lindkvist, E., Martínez Peña, R., Radosavljevic, S., Ylikoski, P., Schlüter, M. (2024):
A primer to causal reasoning about a complex world
SpringerBriefs in Philosophy
Springer, Cham, 150 pp. 10.1007/978-3-031-59135-8 - Milles, A., Banitz, T., Bielcik, M., Frank, K., Gallagher, C.A., Jeltsch, F., Jepsen, J.U., Oro, D., Radchuk, V., Grimm, V. (2023):
Local buffer mechanisms for population persistence
Trends Ecol. Evol. 38 (11), 1051 - 1059 10.1016/j.tree.2023.06.006 - Wiegand, T., Wang, X., Anderson-Teixeira, K.-J., Bourg, N.A., Cao, M., Ci, X., Davies, S.J., Hao, Z., Howe, R.W., Kress, W.J., Lian, J., Li, J., Lin, L., Lin, Y., Ma, K., McShea, W., Mi, X., Su, S.-H., Sun, I.-F., Wolf, A., Ye, W., Huth, A. (2021):
Consequences of spatial patterns for coexistence in species-rich plant communities
Nat. Ecol. Evol. 5 (7), 965 - 973 10.1038/s41559-021-01440-0 - Weise, H., Auge, H., Baessler, C., Bärlund, I., Bennett, E.M., Berger, U., Bohn, F., Bonn, A., Borchardt, D., Brand, F., Chatzinotas, A., Corstanje, R., De Laender, F., Dietrich, P., Dunker, S., Durka, W., Fazey, I., Groeneveld, J., Guilbaud, C.S.E., Harms, H., Harpole, S., Harris, J., Jax, K., Jeltsch, F., Johst, K., Joshi, J., Klotz, S., Kühn, I., Kuhlicke, C., Müller, B., Radchuk, V., Reuter, H., Rinke, K., Schmitt-Jansen, M., Seppelt, R., Singer, A., Standish, R.J., Thulke, H.-H., Tietjen, B., Weitere, M., Wirth, C., Wolf, C., Grimm, V. (2020):
Resilience trinity: safeguarding ecosystem functioning and services across three different time horizons and decision contexts
Oikos 129 (4), 445 - 456 10.1111/oik.07213 - Taubert, F., Fischer, R., Groeneveld, J., Lehmann, S., Müller, M.S., Rödig, E., Wiegand, T., Huth, A. (2018):
Global patterns of tropical forest fragmentation
Nature 554 (7693), 519 - 522 10.1038/nature25508 - Fetzer, I., Johst, K., Schäwe, R., Banitz, T., Harms, H., Chatzinotas, A. (2015):
The extent of functional redundancy changes as species’ roles shift in different environments
Proc. Natl. Acad. Sci. U.S.A. 112 (48), 14888 - 14893 10.1073/pnas.1505587112 - Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W.M., Railsback, S.F., Thulke, H.-H., Weiner, J., Wiegand, T., DeAngelis, D.L. (2005):
Pattern-oriented modeling of agent-based complex systems: lessons from ecology
Science 310 (5750), 987 - 991 10.1126/science.1116681
Contact
Links
- ERC project „Towards a Unified Spatial Theory of Biodiversity“
- ERC Advanced Investigator Grant: Towards a Spatial Theory for Coexistence of Species-Rich Communities
- Microbial ecosystem analysis – combining ecological theory and modelling with microbiology
References
Fetzer, I., Johst, K., Schäwe, R., Banitz, T., Harms, H., Chatzinotas, A., 2015. The extent of functional redundancy changes as species' roles shift in different environments. Proceedings of the National Academy of Sciences 112, 14888-14893.
Grimm, V., Berger, U., Meyer, M., Lorscheid, I., 2024. Theory for and from agent-based modelling: Insights from a virtual special issue and a vision. Environmental Modelling & Software 178, 106088.
Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W.M., Railsback, S.F., Thulke, H.-H., Weiner, J., Wiegand, T., DeAngelis, D.L., 2005. Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310, 987-991.
Johansson, L.-G., Banitz, T., Grimm, V., Hertz, T., Lindkvist, E., Martínez Peña, R., Radosavljevic, S., Ylikoski, P., Schlüter, M., 2024. A Primer to Causal Reasoning About a Complex World. Springer Nature.
Milles, A., Banitz, T., Bielcik, M., Frank, K., Gallagher, C.A., Jeltsch, F., Jepsen, J.U., Oro, D., Radchuk, V., Grimm, V., 2023. Local buffer mechanisms for population persistence. Trends in Ecology & Evolution.
Taubert, F., Fischer, R., Groeneveld, J., Lehmann, S., Müller, M.S., Rödig, E., Wiegand, T., Huth, A., 2018. Global patterns of tropical forest fragmentation. Nature 554, 519-522.
Weise, H., Auge, H., Baessler, C., Bärlund, I., Bennett, E.M., Berger, U., Bohn, F., Bonn, A., Borchardt, D., Brand, F., Chatzinotas, A., Corstanje, R., Laender, F.D., Dietrich, P., Dunker, S., Durka, W., Fazey, I., Groeneveld, J., Guilbaud, C.S.E., Harms, H., Harpole, S., Harris, J., Jax, K., Jeltsch, F., Johst, K., Joshi, J., Klotz, S., Kühn, I., Kuhlicke, C., Müller, B., Radchuk, V., Reuter, H., Rinke, K., Schmitt–Jansen, M., Seppelt, R., Singer, A., Standish, R.J., Thulke, H.H., Tietjen, B., Weitere, M., Wirth, C., Wolf, C., Grimm, V., 2020. Resilience trinity: safeguarding ecosystem functioning and services across three different time horizons and decision contexts. Oikos 129, 445-456.
Wiegand, T., Wang, X., Anderson-Teixeira, K.J., Bourg, N.A., Cao, M., Ci, X., Davies, S.J., Hao, Z., Howe, R.W., Kress, W.J., 2021. Consequences of spatial patterns for coexistence in species-rich plant communities. Nature Ecology & Evolution 5, 965-973.