Dr. José L. J. Ledesma

Helmholtz Centre for
Environmental Research - UFZ
Permoserstr. 15
04318 Leipzig
Germany


Projects
SUDOCQU   
                NAPSEA


Research topics

I am a catchment hydrologist, biogeochemist, and modeller with a strong focus on understanding and managing river network dynamics. My research bridges basic and applied science, combining theoretical, empirical, and modelling approaches to enhance our fundamental understanding of hydrological and biogeochemical processes while developing practical tools to support decision-making in both public and private sectors.

My work investigates the mobilization, transformation, and transport of solutes from catchment soils—particularly riparian zones—to surface waters, alongside in-stream processes. While forest headwaters serve as my primary experimental units, my research extends to larger downstream water bodies, covering diverse ecoregions, from boreal to Mediterranean climates, and temporal scales, from rainfall event dynamics to long-term future projections.

Although much of my research has focused on organic carbon cycling, I work with a wide array of chemical constituents including nutrients, base cations, metals, sulfur, microplastics, and greenhouse gases. My applied research employs advanced modelling techniques to tackle real-world challenges by informing sustainable river network management strategies and guiding cost-effective water treatment solutions for the drinking water industry.

Curriculum Vitae

Sep 2024 - present

Tenure-track Researcher at National Museum of Natural Sciences - Spanish National Research Council (MNCN-CSIC), Department of Biogeochemistry and Microbial Ecology, Madrid, Spain

Sep 2024 - present

Guest Researcher at Helmholtz Centre for Environmental Research - UFZ, Department of Hydrogeology, Leipzig, Germany

Jun 2023 - Aug 2024

Postdoctoral Researcher at Helmholtz Centre for Environmental Research - UFZ, Department of Hydrogeology, Leipzig, Germany

Sep 2020 - Feb 2023

Postdoctoral Researcher (Marie Curie Individual Fellowship grant) at Karlsruhe Institute of Technology (KIT), Institute of Geography and Geoecology, Karlsruhe, Germany

Apr 2019 - Aug 2020

Postdoctoral Researcher (Juan de la Cierva grant) at Centre for Advanced Studies of Blanes - Spanish National Research Council (CEAB-CSIC), Blanes, Spain

Mar 2016 - Feb 2019

Postdoctoral Researcher at Swedish University of Agricultural Sciences (SLU), Department of Aquatic Sciences and Assessment, Uppsala, Sweden

Aug 2011 - Mar 2016

Doctoral degree in Environmental Assessment at Swedish University of Agricultural Sciences (SLU), Department of Aquatic Sciences and Assessment, Uppsala, Sweden.

Title of Doctoral thesis: “Biogeochemical processes in forest riparian zones - Conceptualizing function and heterogeneity in boreal catchments”

Publications

[37] Ledesma JLJ, Musolff A, Sponseller RA, Lupon A, Peñarroya X, Jativa C, and Bernal S. (2025). The riparian zone controls headwater hydrology and biogeochemistry, doesn't it? Reassessing linkages across European ecoregions. Global Biogeochemical Cycles, 39, e2024GB008250, doi: 10.1029/2024GB008250.

[36] Bernal S, Ledesma JLJ, Peñarroya X, Jativa C, Catalán N, Casamayor EO, Lupon A, Marcé R, Martí E, Triadó-Margarit X, and Rocher-Ros G. (2025). Expanding towards contraction: the alternation of floods and droughts as a fundamental component in river ecology. Biogeochemistry, 168, 11, doi: 10.1007/s10533-024-01197-1.

[35] Musolff A, Tarasova L, Rinke K, and Ledesma JLJ. (2024). Forest Dieback Alters Nutrient Pathways in a Temperate Headwater Catchment. Hydrological Processes, 38, e15308, doi: 10.1002/hyp.15308.

[34] Norling M, Hurley R, Schell T, Futter MN, Rico A, Vighi M, Blanco A, Ledesma JLJ, and Nizzetto L. (2024). Retention efficiency for microplastic in a landscape estimated from empirically validated dynamic model predictions. Journal of Hazardous Materials, 464, 132993, doi: 10.1016/j.jhazmat.2023.132993.

[33] Peñarroya X, Lupon A, Triadó-Margarit X, Martí E, Ledesma JLJ, Ribot M, Soler M, Casamayor EO, and Bernal S (2023). Dissolved organic carbon bioreactivity and DOC:DIN stoichiometry control ammonium uptake in an intermittent Mediterranean stream. Freshwater Biology, 68, 1572-1587, doi: 10.1111/fwb.14152.

[32] Colls M, Vida A, Zufiarre A, Camacho-Santamans A, Laini A, González-Ferreras AM, Filipe AF, Pérez-Calpe AV, Freixa A, Lupon A, Santamans AC, Pradhan A, Espinosa C, Vera-Trujillo C, Gutiérrez-Canovas C, Mendoza-Lera C, Bruno D, Mercado-Bettin D, Morant D, Batista D, Cunillera-Montcusi D, Graça D, Vico-Oton E, Estévez E, Leon-Palmero E, Suarez EL, Fenoy E, Lima E, Picazo F, Oficialdegui FJ, Keck F, Gionchetta G, Sabas I, Pérez-Silos I, Antunes I, Alvarez-Manzaneda I, de Guzmán I, Fernandes I, da Silva JP, Wei J, Montes-Pérez JJ, Trabulo J, Ledesma JLJ, Fernandez-Calero JM, Ramião JP, Rubio-Rios J, Gonzalez-Trujillo JD, Barral-Fraga L, Jiménez L, Vendrell-Puigmitja L, Bertrans L, Gomez-Gener L, Rovelli L, Thuile-Bistarelli L, Sanchez-Morales M, Cabrerizo MJ, Aranguren-Gassis M, Argudo M, Navarro-Ramos MJ, Atristain M, Lopez-Rojo N, Valiente N, Perujo N, Pereda O, Llanos-Pérez O, Belmar O, Tascon-Peña O, Rodriguez-Lozano P, Sánchez de Pedro R, Arias-Real R, Bolpagni R, del Campo R, Poblador S, Guareschi S, Duarte S, Rodriguez-Castillo T, Chonova T, Conejo-Orosa T, Céspedes V, Granados V, Osorio V, Vazquez V, Martin-Vélez V, and Romero F (2024). Impacts of diffuse urban stressors on stream benthic communities and ecosystem functioning: A review. Limnetica, 43, 89-108. doi: 10.23818/limn.43.07.

[31] Bernal S, Cohen MJ, Ledesma JLJ, Kirk L, Martí E, and Lupon A (2022). Stream metabolism sources a large fraction of carbon dioxide to the atmosphere in two hydrologically contrasting headwater streams. Limnology and Oceanography, 67, 2621-2634. doi: 10.1002/lno.12226.

[30] Ledesma JLJ, Lupon A, Martí E, and Bernal S (2022). Hydrology and riparian forests drive carbon and nitrogen supply and DOC:NO3− stoichiometry along a headwater Mediterranean stream. Hydrology and Earth System Sciences, 26, 4209–4232. doi: 10.5194/hess-26-4209-2022.

[29] Guasch H, Bernal S, Bruno D, Carney Almroth B, Cochero J, Corcoll N, Cornejo D, Gacia E, Kroll A, Lavoie I, Ledesma JLJ, Lupon A, Margenat H, Morin S, Navarro E, Ribot M, Riis T, Schmitt-Jansen M, Tlili A, and Martí E (2022). Interactions between microplastics and benthic biofilms in fluvial ecosystems: knowledge gaps and future trends. Freshwater Science, 41, 442-458, doi: 10.1086/721472.

[28] Castelar S, Bernal S, Ribot M, Merbt SN, Tobella M, Sabater F, Ledesma JLJ, Guasch H, Lupon A, Gacia E, Drummond JD, and Martí E (2022). Wastewater treatment plant effluent inputs influence the temporal variability of nutrient uptake in an intermittent stream. Urban Ecosystems, 25, 1313-1326, doi: 10.1007/s11252-022-01228-5.

[27] Ledesma JLJ, Lupon A, and Bernal S (2021). Hydrological responses to rainfall events including the extratropical cyclone Gloria in two contrasting Mediterranean headwaters in Spain; the perennial Font del Regàs and the intermittent Fuirosos. Hydrological Processes, 35, e14451, doi: 10.1002/hyp.14451.

[26] Attermeyer K, Casas-Ruiz JP, Fuß T, Pastor A, Cauvy-Fraunie S, Sheath D, Nydahl AC, Doretto A, Portela AP, Doyle BC, Simov N, Guttman-Roberts C, Niedrist GH, Timoner X, Evtimova VV, Barral-Fraga L, Basic T, Audet J, Deininger A, Busst G, Fenoglio S, Catalán N, de Eyto E, Pilotto F, Mor J, Monteiro J, Fletcher D, Noss C, Colls M, Nagler M, Liu L, González-Quijano CR, Romero F, Pansch N, Ledesma JLJ, Pegg J, Klaus M, Freixa A, Herrero Ortega S, Mendoza-Lera C, Bednařic A, Fonvielle JA, Gilbert P, Kenderov LA, Rulík M, and Bodmer P (2021). Carbon dioxide fluxes increase from day to night across European streams. Communications Earth & Environment, 2, 118, doi: 10.1038/s43247-021-00192-w.

[25] Ledesma JLJ, Ruiz-Pérez G, Lupon A, Poblador S, Futter MN, Sabater F, and Bernal S (2021). Future changes in the Dominant Source Layer of riparian lateral water fluxes in a subhumid Mediterranean catchment. Journal of Hydrology, 595, 126014. doi: 10.1016/j.jhydrol.2021.126014.

[24] Hoffmeister S, Murphy KR, Cascone C, Ledesma JLJ, and Köhler SJ (2020). Evaluating the accuracy of two in situ optical sensors to estimate DOC concentrations for drinking water production. Environmental Science: Water Research & Technology, 6, 2891-2901. doi:10.1039/d0ew00150c.

[23] Morbidelli R, García-Marín AP, Al Mamun A, Atiqur RM, Ayuso-Muñoz JL, Bachir Taouti M, Baranowski P, Bellocchi G, Sangüesa-Pool C, Bennett B, Oyunmunkh B, Bonaccorso B, Brocca L, Caloiero T, Caporali E, Caracciolo D, Casas-Castillo MC, Catalini CG, Chettih M, Kamal Chowdhury AFM, Chowdhury R, Corradini C, Custò J, Dari J, Diodato N, Doesken N, Dumitrescu A, Estévez J, Flammini A, Fowler HJ, Freni G, Fusto F, García-Barrón L, Manesa A, Goenster-Jordan S, Hinson S, Kanecka-Geszke E, Kanti Kar K, Kasperska-Wołowicz W, Krabbi M, Krzyszczak J, Llabrés-Brustenga A, Ledesma JLJ, Liu T, Lompi M, Marsico L, Mascaro G, Moramarco T, Newman N, Orzan A, Pampaloni M, Pizarro-Tapia R, Puentes Torres A, Rashid M, Rodríguez-Solà R, Sepulveda Manzor M, Siwek K, Sousa A, Timbadiya PV, Filippos T, Vilcea MG, Viterbo F, Yoo C, Zeri M, Zittis G, and Saltalippi C (2020). The history of rainfall data time-resolution in a wide variety of geographical areas. Journal of Hydrology, 590, 125258, doi: 10.1016/j.jhydrol.2020.125258.

[22] Xu J, Morris PJ, Liu J, Ledesma JLJ, and Holden J (2020). Increased dissolved organic carbon concentrations in peat‐fed UK water supplies under future climate and sulfate deposition scenarios. Water Resources Research, 56, e2019WR025592. doi: 10.1029/2019wr025592.

[21] Ledesma JLJ, Montori A, Altava-Ortiz V, Barrera-Escoda A, Cunillera J, and Àvila A (2019). Future hydrological constraints of the Montseny brook newt (Calotriton arnoldi) under changing climate and vegetation cover. Ecology and Evolution, 9, 9736-9747, doi: 10.1002/ece3.5506.

[20] Deutscher J, Kupec P, Kučera A, Urban J, Ledesma JLJ, and Futter MN (2019). Ecohydrological consequences of tree removal in an urban park evaluated using open data, free software and a minimalist measuring campaign. Science of the Total Environment, 655, 1495-1504, doi: 10.1016/j.scitotenv.2018.11.277.

[19] Lannergård E, Ledesma JLJ, Fölster J, and Futter MN (2019). An evaluation of high frequency turbidity as a proxy for riverine total phosphorus concentrations. Science of the Total Environment, 651, 103-113, doi: 10.1016/j.scitotenv.2018.09.127.

[18] Lupon A, Ledesma JLJ, and Bernal S (2018). Riparian evapotranspiration is essential to simulate stream flow dynamics and water budgets in a Mediterranean catchment, Hydrology and Earth System Sciences, 22, 4033-4045. doi: 10.5194/hess-22-4033-2018.

[17] Bravo AG, Kothawala DN, Attermeyer K, Tessier E, Bodmer P, Ledesma JLJ, Audet J, Casas-Ruiz JP, Catalán N, Cauvy-Fraunie S, Colls M, Deininger A, Evtimova VV, Fonvielle JA, Fuß T, Gilbert P, Herrero Ortega S, Liu L, Mendoza-Lera C, Monteiro J, Mor JR, Nagler M, Niedrist GH, Nydahl AC, Pastor A, Pegg J, Roberts CG, Pilotto F, Portela AP, Romero González-Quijano C, Romero F, Rulík M, and Amoroux D (2018). The interplay between total mercury, methylmercury and dissolved organic matter in fluvial systems: A latitudinal study across Europe, Water Research, 144, 172-182, doi: 10.1016/j.watres.2018.06.064.

[16] Ledesma JLJ, Kothawala DN, Bastviken P, Maehder S, Grabs T, and Futter MN (2018). Stream dissolved organic matter composition reflects the riparian zone, not upslope soils in boreal forest headwaters, Water Resources Research, 54, 3896-3912. doi: 10.1029/2017wr021793.

[15] O’Driscoll C, Ledesma JLJ, Coll J, Murnane JG, Nolan P, Mockler E, Futter MN, and Xiao L (2018). Minimal climate change impacts on natural organic matter forecasted for a potable water supply in Ireland, Science of the Total Environment, 630, 869–877, doi: 10.1016/j.scitotenv.2018.02.248.

[14] Bussi G, Whitehead PG, Gutiérrez-Cánovas C, Ledesma JLJ, Ormerod SJ, and Couture R. (2018). Modelling the effects of climate and land-use change on the hydrochemistry and ecology of the River Wye (Wales). Science of the Total Environment, 627, 733-743, doi: 10.1016/j.scitotenv.2018.01.295.

[13] Gutchess K, Jin L, Ledesma JLJ, Crossman J, Kelleher C, Lautz L, and Lu Z (2018). Long-term climatic and anthropogenic impacts on stream water salinity in New York State: INCA simulations offer cautious optimism. Environmental Science & Technology, 52, 1339–1347, doi: 10.1021/acs.est.7b04385.

[12] Ecke F, Levanoni O, Audet J, Carlson P, Eklöf K, Hartman G, Mckie B, Ledesma JLJ, Segersten J, Truchy A, and Futter MN (2017). Meta-analysis of environmental effects of beaver in relation to artificial dams. Environmental Research Letters, 12, 113002, doi: 10.1088/1748-9326/aa8979.

[11] Ledesma JLJ and Futter MN (2017). Gridded climate data products are an alternative to instrumental measurements as inputs to rainfall-runoff models, Hydrological Processes, 31, 3283-3293, doi: 10.1002/hyp.11269.

[10] Ledesma JLJ, Futter MN, Blackburn M, Lidman F, Grabs T, Sponseller RA, Laudon H, Bishop KH, and Köhler SJ (2018). Towards an improved conceptualization of riparian zones in boreal forest headwaters, Ecosystems, 21, 297–315. doi: 10.1007/s10021-017-0149-5.

[09] Blackburn M, Ledesma JLJ, Näsholm T, Laudon H, and Sponseller RA (2017). Evaluating hillslope and riparian contributions to dissolved nitrogen (N) export from a boreal forest catchment, Journal of Geophysical Research – Biogeosciences, 122, 324-339, doi: 10.1002/2016JG003535.

[08] Erlandsson M, Oelkers EH, Bishop K, Sverdrup H, Belyazid S, Ledesma JLJ, and Köhler SJ (2016). Spatial and temporal variations of base cation release from chemical weathering on a hillslope scale, Chemical Geology, 441, 1-13, doi: 10.1016/j.chemgeo.2016.08.008.

[07] Oni SK, Futter MN, Ledesma JLJ, Teutschbein C, Buttle J, and Laudon H (2016). Using dry and wet year hydroclimatic extremes to guide future hydrologic projections, Hydrology and Earth System Sciences, 20, 2811-2825, doi: 10.5194/hess-20-2811-2016.

[06] Ledesma JLJ, Futter MN, Laudon H, Evans CD, and Köhler SJ (2016). Boreal riparian zones regulate stream sulfate and dissolved organic carbon, Science of the Total Environment, 560-561, 110-122. doi: 10.1016/j.scitotenv.2016.03.230.

[05] De Wit HA, Ledesma JLJ, and Futter MN (2016). Aquatic DOC export from subarctic Atlantic blanket bog in Norway is controlled by seasalt deposition, temperature and precipitation, Biogeochemistry, 127, 305-321, doi: 10.1007/s10533-016-0182-z.

[04] Oni SK, Tiwari T, Ledesma JLJ, Ågren A, Teutschbein C, Schelker J, Laudon H, and Futter MN (2015). Local and landscape-scale impacts of clear-cuts and climate change on surface water dissolved organic carbon in boreal forests, Journal of Geophysical Research – Biogeosciences, 120, 2402-2426, doi: 10.1002/2015JG003190.

[03] Ledesma JLJ, Grabs T, Bishop KH, Schiff SL, and Köhler SJ (2015). Potential for long-term transfer of dissolved organic carbon from riparian zones to streams in boreal catchments, Global Change Biology, 21, 2963-2979. doi: 10.1111/gcb.12872.

[02] Ledesma JLJ, Grabs T, Futter MN, Bishop KH, Laudon H, and Köhler SJ (2013). Riparian zone control on base cation concentration in boreal streams, Biogeosciences, 10, 3849-3868, doi: 10.5194/bg-10-3849-2013.

[01] Ledesma JLJ, Köhler SJ, and Futter MN (2012). Long-term dynamics of dissolved organic carbon: Implications for drinking water supply, Science of the Total Environment, 432: 1-11. doi: 10.1016/j.scitotenv.2012.05.071.