Publication Details

Reference Category Journals
DOI / URL link
Document author version
Title (Primary) Response of prokaryotic, eukaryotic and algal communities to heavy rainfall in a reservoir supplied with reclaimed water
Author Xin, Y.; Zhang, J.; Lu, T.; Wei, Y.; Shen, P.
Journal Journal of Environmental Management
Year 2023
Department ISOBIO
Volume 334
Page From art. 117394
Language englisch
Topic T7 Bioeconomy
Keywords Reservoir; Heavy rainfall; Prokaryotic community; Eukaryotic community; Algal community
Abstract The global climate change made the heavy rainfall happen more frequently, and the non-point source pollution caused by it would exacerbate the risk to the water ecological environment. In this study, we took a reservoir (Shahe reservoir, Beijing, China) supplied with reclaimed water as an exapmle to investigate how spatiotemporal changes in the quantity and diversity of prokaryotic, eukaryotic, and algal communities respond to heavy rainfall. Results showed that heavy rainfall could directly impact the composition of the prokaryotic community by introducing amounts of runoff closely associated bacterium especially for the human potential pathogens such as Aliarcobacter, Aeromonas and Pseudomonas in the Shahe reservoir area. While the eukaryotic community was rather stable, and the development and changes in algal communities occurred in the last few days after heavy rainfall. The microbial source tracking through FEAST indicated that Nansha river (S) was the major contributor to the development of all the three concerned communities in the reservoir. The co-occurrence analysis showed that the modules with the highest cumulative abundance in each community were all strongly and positively connected with Chl-a, pH, turbidity, COD and TOC, but negatively correlated with NO3–N (p < 0.01). The network analysis showed that the eukaryotes played a key role in the interaction network among the three communities, and were more likely to interact with algae and prokaryotes. It was suggested that the controlling of human potential pathogens associated with prokaryotic community should be emphasized at the beginning of the heavy rainfall, but the prevention of the eutrophication bloom should be another focus after the heavy rainfall. This study provided valuable information concerning the role of heavy rainfall on the water ecological environment from the perspective of microbial community.
Persistent UFZ Identifier
Xin, Y., Zhang, J., Lu, T., Wei, Y., Shen, P. (2023):
Response of prokaryotic, eukaryotic and algal communities to heavy rainfall in a reservoir supplied with reclaimed water
J. Environ. Manage. 334 , art. 117394