Publication Details

Category Text Publication
Reference Category Journals
DOI 10.1016/j.tree.2019.11.006
Document accepted manuscript
Title (Primary) Towards a new generation of trait-flexible vegetation models
Author Berzaghi, F.; Wright, I.J.; Kramer, K.; Oddou-Muratorio, S.; Bohn, F.J.; Reyer, C.P.O.; Sabaté, S.; Sanders, T.G.M.; Hartig, F.
Source Titel Trends in Ecology & Evolution
Year 2020
Department OESA
Volume 35
Issue 3
Page From 191
Page To 205
Language englisch
Keywords highlight; plant traits; intraspecific variation; vegetation modeling; eco-evolution; plant genetics
Abstract Plant trait variability, emerging from eco-evolutionary dynamics that range from alleles to macroecological scales, is one of the most elusive, but possibly most consequential, aspects of biodiversity. Plasticity, epigenetics, and genetic diversity are major determinants of how plants will respond to climate change, yet these processes are rarely represented in current vegetation models. Here, we provide an overview of the challenges associated with understanding the causes and consequences of plant trait variability, and review current developments to include plasticity and evolutionary mechanisms in vegetation models. We also present a roadmap of research priorities to develop a next generation of vegetation models with flexible traits. Including trait variability in vegetation models is necessary to better represent biosphere responses to global change.
Persistent UFZ Identifier https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=22603
Berzaghi, F., Wright, I.J., Kramer, K., Oddou-Muratorio, S., Bohn, F.J., Reyer, C.P.O., Sabaté, S., Sanders, T.G.M., Hartig, F. (2020):
Towards a new generation of trait-flexible vegetation models
Trends Ecol. Evol. 35 (3), 191 - 205 10.1016/j.tree.2019.11.006