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Abstract 37 

Plant trait variability, emerging from eco-evolutionary dynamics that range from alleles to 38 

macroecological scales, is one of the most elusive but possibly most consequential aspects 39 

of biodiversity. Plasticity, epigenetics, and genetic diversity are major determinants of how 40 

plants will respond to climate change, yet these processes are rarely represented in current 41 

vegetation models. We provide an overview of the challenges associated with understanding 42 

the causes and consequences of plant trait variability, and review current developments to 43 

include plasticity and evolutionary mechanisms in vegetation models. We also present a 44 

roadmap of research priorities to develop a next generation of vegetation models with flexible 45 

traits. Including trait variability in vegetation models is necessary to better represent 46 

biosphere responses to global change.  47 

  48 
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A short review of trait variability and its consequences for ecosystems  49 

 50 

Plants are the main primary producers in the terrestrial biosphere and have major impacts on 51 

global biogeochemical cycles and climate (e.g. [1–3]). Plant ecosystems also maintain an 52 

astonishing amount of biological diversity and provide a multitude of services (e.g. [4]). They 53 

do so, at each location, through a mix of growth forms and physiological functions that is 54 

known as phenotypic or trait variability (Glossary) [5].  55 

 56 

The study of trait variability has a long tradition in ecology. After all, selection on heritable 57 

intraspecific trait variability was the key idea for Darwin’s theory of evolution. In the 1970-58 

80s, the emerging field of comparative ecology emphasized plant ecological strategies and 59 

analyses of interspecific trait variability and trade-offs between species [6–8]. Energetic 60 

organization of trait data during the last 20 years [9–14] has enabled broad-scale 61 

quantification of key traits and trade-offs across space and time, and across taxonomic and 62 

functional groups [15,16]. A fundamental insight is that certain combinations of traits jointly 63 

characterize plant life-histories and their ecological strategies [17,18]. Increasingly, the focus 64 

is shifting to the effects of both intraspecific variability [19–21] and rapid evolution [22] in the 65 

context of species and ecosystem adaptation to climate change.  66 

 67 

Observed within- and between-species variability in plant functional traits can result from 68 

plastic responses to biotic and abiotic conditions, and from heritable genetic or epigenetic 69 

differences (e.g., [20,23–26] and Figure 1). Evidence for within-species variability from 70 

provenance trials, common garden experiments [27–30], and observations of rapid 71 

evolution [30–32] demonstrate that intraspecific phenotypic differences are often heritable and 72 

adaptive. This suggests that traits can evolve at ecological time-scales and that the concept 73 

of a species as a functionally static unit is an approximation at best.  74 

 75 
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A challenge for understanding the consequences of trait variability is that we seldom know if 76 

measured trait differences arise from standing diversity, plasticity, or both. There is hope 77 

that population genomics and next generation sequencing [33] could establish genotype-to-78 

phenotype maps [34] and make it easier to decipher the genetic and plastic components of 79 

observed patterns of variation. Currently, however, most data only document existing 80 

patterns of trait variability, with no guarantee that this variability will persist over time, e.g. 81 

under changing climates.  82 

 83 

Another key challenge is understanding the consequences of trait variability. Trait variability 84 

is often assumed critical for competition, fitness, adaptation and resilience in plant 85 

communities, particularly during rapid climatic change [35,36] – e.g. because trait variability 86 

likely increases evolvability, and buffers species and ecosystems against environmental 87 

fluctuations [20,23,26]. However, theoretical models show that trait variability is not always 88 

beneficial [37] and empirical studies often fail to demonstrate the expected links to fitness 89 

[38]. The consequences of trait variability thus seem more complex and context-dependent 90 

than commonly assumed. If true, an obvious and possibly the only route forward is to explore 91 

these questions with models that describe traits in a more quantitative and mechanistic way.  92 

Modelling the consequences and evolution of plant trait variability: the crucial role of 93 

vegetation models 94 

Detailed mechanistic models already exist that describe communities of plant species in 95 

terms of their underlying biogeochemical and ecological processes (Dynamic vegetation 96 

models = DVM see Box 1, see also [39–41]). These models have been instrumental for 97 

understanding global biome distributions and for creating dynamic projections of plant 98 

ecosystems under global environmental change [41–44].  99 

 100 
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An increasingly noted shortcoming of these models, however, is their limited representation 101 

of phenotypic variability (e.g. [45,46]). Most DVMs operate with a fixed phenotype per species 102 

or represent the world’s species via a small number of Plant Functional Types (PFTs). This 103 

simplistic representation largely neglects the complex patterns of trait variability within and 104 

between species. Such patterns occur at all ecological scales [18,20] and across ontogenetic 105 

stages. Fixed phenotypes do not account for changes in traits that may occur through plastic 106 

and eco-evolutionary dynamics [15,27]. Thus, most current models are ill-equipped to 107 

explore the consequences of trait variability for ecosystems dynamics or biosphere-108 

atmosphere interactions [1,3]. The lack of processes responsible for trait variability (Fig. 1) 109 

increases the uncertainties in the predictions provided by DVMs. 110 

 111 

In response to these issues, there have been several attempts to establish next-generation 112 

vegetation models, which here we summarize as plastic, prescribed, and eco-evolutionary 113 

models of trait variability (Box 2 and Supplementary material) 114 

 115 

Plastic models of intraspecific variability emphasize functional plasticity and trade-offs within 116 

plants. In such models, plants can, for example, exhibit morphological and/or physiological 117 

changes (e.g. in leaf characteristics or allocation strategies) in response to environmental 118 

conditions [47–49]. However, these models are limited by the lack of heritable variability. For 119 

example, they assume that all individuals of a species in a given environment express the 120 

same phenotype and that the adaptation to changes in environmental drivers is 121 

instantaneous.  122 

 123 

Models with prescribed intraspecific variability incorporate non-plastic trait variability into the 124 

modeled processes, but do not explain its origin. These models may help to understand the 125 

role of trait variability in structuring plant communities; however, their ability to correctly 126 

predict the re-assembly of communities after disturbance is being challenged. Mounting 127 
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evidence suggests that evolutionary processes can happen on ecological time scales, in 128 

particular under strong selection [31,32].  129 

 130 

Eco-evolutionary models address this shortcoming by simulating intraspecific variability as 131 

the result of ecological and evolutionary processes (in particular natural selection, e.g. [50]). 132 

Simple eco-evolutionary models draw new individuals from a given trait distribution and let 133 

selection act upon them. More sophisticated (and computationally costly) models draw new 134 

individuals from the current community following genetic inheritance rules, and via explicit 135 

models of genotype-phenotype relationships (see Box 3). By representing genetic processes, 136 

rapid evolution in response to climate change can be more reliably modeled.  137 

Research priorities for next-generation trait-flexible models 138 

Despite encouraging progress, there is clear potential for a more robust representation of 139 

intraspecific trait variability and its genetic origin in DVMs. Below we outline what we see as 140 

research priorities and key challenges for creating a new generation of trait-flexible models 141 

that, in principle, would fully account for and predict observed variability and plasticity in plant 142 

traits and functions.  143 

Understanding plasticity, acclimation, and lagged effects  144 

Current DVMs may include limited plasticity at the process-level, e.g. in allocation, 145 

phenology, photosynthesis and autotrophic respiration [51]. In working towards a more 146 

complete treatment of physiological and morphological plasticity a first challenge is to create 147 

appropriate empirical models. In particular, plasticity as a within-generation response to 148 

environmental variability needs to be disentangled from across-generation responses 149 

achieved either by epigenetic or genetic inheritance. Representing within-generation lagged 150 

effects is especially challenging, e.g. the effect of past stress (drought, starvation, etc.) on 151 

plant traits and future mortality rates. Lagged effects are observed in empirical studies but not 152 
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well understood and thus rarely modeled [52]. A first step would be to incorporate some of 153 

these lagged effects through dynamic functions that relate disturbance events to 154 

physiological responses [52–54].  155 

Closing the demographic loop 156 

For modelling eco-evolutionary dynamics, we also have to determine the fitness of any given 157 

phenotype or genotype. Many existing vegetation models are not particularly well-suited for 158 

this task [39] also due to a limited description of mortality and recruitment processes [39,55]. 159 

arguably because the primary focus of past model development has been on growth 160 

(individual-tree and stand-scale models), productivity, and carbon cycling (global models). 161 

Many widely-used models simulate recruitment via a constant seed rain, making reproduction 162 

independent from the performance of traits or species in the standing community (but see 163 

[56]). This is clearly inadequate to simulate evolution.  164 

 165 

Moreover, a lot is known about variability in seed production and seed size and the 166 

implications for plant demography (e.g.,  [8,17,57]), yet relatively little use is made of this 167 

knowledge (but see [58,59]). Other entry points to simulate plasticity across life stages are 168 

changes in allocation to plant defenses [60] and ontogenetic shifts in leaf traits [61]. 169 

Ultimately, without realistic descriptions of all three demographic processes – reproduction, 170 

growth, and mortality (i.e., “closing the demographic loop”) – we cannot generate realistic 171 

predictions about how selection influences the distribution of observed phenotypes at local 172 

scales, especially in variable environments. 173 

Space and dispersal 174 

Evolutionary models often assume well-mixed populations but we know that genetic and 175 

phenotypic variation in plants show strong spatial structure. Few models incorporate key 176 

mechanisms for predicting shifts in species’ range [62]. Further, spatial processes are needed 177 
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to study plant responses when climatic and non-climatic agents of selection are decoupled 178 

[63]. When trying to represent these structures and processes in DVMs, we face the problem 179 

that most DVMs are not spatially explicit. Typically, they produce maps based on 180 

independently-simulated communities (e.g., from 25 x 25m up to several hectares), which are 181 

then averaged to create large-scale maps. In principle, the knowledge and data for a better 182 

representation of spatial processes is often available. Yet, it can be prohibitively complex to 183 

track pollen and seeds or to follow the germination and growth of a large number of offspring. 184 

However, recent examples show some solutions to implement spatial processes such as 185 

dispersal and pollination at various geographical scales (i.e., local to continental) [64–67]. 186 

Trade-offs 187 

Any eco-evolutionary model will have to define appropriate trade-offs to constrain species 188 

properties to eco-physiologically realistic values, and to avoid unbeatable (and unrealistic) 189 

“superspecies” (or supergenotypes) emerging and taking over. A pragmatic approach  [46,56] 190 

is to represent key trade-offs using observed trait correlations (e.g., the leaf economics 191 

spectrum or LES: [13]). Another option is to incorporate theory for specific trade-offs, e.g. 192 

concerning seed and seedling competition vs. colonization abilities [57], water and nutrient 193 

use in photosynthesis [68], or biomass allocation to different plant parts (e.g., [69]). A further 194 

approach is to better define trait-climate relationships using combined trait and flux data, 195 

allowing one to develop dynamic acclimation functions [70]. Still, some fundamental 196 

questions remain; most notably the extent to which trade-offs among traits are general within 197 

species as well as across taxonomic groups, and independent of other plant parameters [19]. 198 

Increasingly detailed quantification of geographic trait variation (e.g. [71]) will facilitate a 199 

better representation of local adaptation [72] and overcome some of the limitations described 200 

in Box 2. 201 
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Epigenetic inheritance   202 

Current DVMs do not consider that plastic responses can be propagated across generations 203 

via epigenetic mechanisms [73]. These effects are probably more significant and have a 204 

shorter response time than genetically inherited effects [22,63,73] . The main challenge of 205 

implementing epigenetic processes is our lack of precise knowledge about them: there is 206 

abundant empirical evidence for epigenetic regulation in non-natural environments, but we 207 

lack data to make predictive models for natural situations. Limited knowledge of epigenetic 208 

mechanisms makes their implementation a low priority, until high-throughput sequencing 209 

provides sufficiently abundant quantitative data linking them to evolutionary processes [73].  210 

Genetic architecture and the genotype-phenotype link  211 

Many eco-evolutionary models of trait evolution assume that mutations act directly on traits 212 

[56,74,75] . In reality, mutations act on genes and thus only indirectly on traits via genotype-213 

phenotype links. Accounting for recombination, genetic architecture of traits, and any 214 

deviation from random mating can lead to important differences in the rate of adaptation 215 

simulated by gene-based-evolution models compared to trait-based-evolution models. In 216 

particular, recombination enables considerably faster creation of new phenotypes from an 217 

existing gene pool than does mutation. The ways in which genetic architecture drives trait 218 

evolution is still debated. However, enough knowledge is available to couple basic 219 

evolutionary models with explicit genetic structure to DVMs and other ecological models 220 

[50,67,76] (Box 3). Presumably, accounting for the rate of adaptation of traits is most 221 

important: 1) for short-lived plants; 2) in ecosystems with frequent generational changes due 222 

to high disturbance rates or forest management; and 3) for tree populations at the edge of 223 

their distributions [77]. Yet, a key problem in these models is predicting phenotypes from 224 

genotypes and environment; this requires data and knowledge still unavailable for many tree 225 

species and traits of interest, and is often population-specific. Another challenge is scaling up 226 

these processes to large spatial and time scales to understand adaptation processes such as 227 
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gene flow and reproductive isolation across species’ ranges (see also next section: Efficient 228 

scaling) 229 

Efficient scaling across several space or time scales 230 

Implementing many of the processes described above invokes an old, but still unresolved 231 

issue in theoretical ecology: the problem of upscaling the effects of local or short-term 232 

processes (dispersal, microevolution) to large temporal and spatial scales [78]. Aside from the 233 

inevitable technical considerations, it is important to consider that patterns of trait variability 234 

might not hold across geographic and ecological scales ([19,79]). These findings have 235 

implications for DVMs because global trait parameters, even if flexible, might add uncertainty 236 

when upscaling local ecosystem properties. More fundamental research is needed on the 237 

subject. For now, a practical and partial solution would be to use georeferenced trait data 238 

when determining tradeoffs and, when available, local trait data (see Tradeoff section).  239 

Model-Data integration  240 

Finally, a crucial point for the utility of new model structures is their ability to use and 241 

integrate existing data. General approaches for model-data integration have been discussed 242 

elsewhere (e.g. [40]). The core of this discussion is that data can enter the model at different 243 

levels - as inputs, as drivers, as prior information on model parameters or on model outputs, 244 

the latter requiring inverse modelling to back-propagate output data to infer model 245 

parameters or states. These general insights remain valid for the problem we tackle here, but 246 

in practice the question will be if sufficient data are available to constrain DVMs and where in 247 

these models are the data best placed to constrain key processes.  248 

 249 

The most obvious data type to consider is trait data. For example, the TRY database 250 

(www.try-db.org) currently holds ca. 12 million trait records from 280000 species. For further 251 

trait databases see Schneider et al. 2019 [14], eFlower (http://eflower.myspecies.info/), and 252 
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China Plant Trait Database [80]. Not all trait records map 1:1 to model parameters, but these 253 

databases are clearly a key data source for creating priors on model parameters and trade-254 

offs, or to obtain data on outputs for those model types in which trait distributions are 255 

emergent. There are many other, more specialized data types that are also interesting. Data 256 

from provenance experiments, for example, contain information about heritable intraspecific 257 

differences, in particular regarding leaf properties (morphology and chemistry), bud burst, 258 

phenology, photosynthetic and hydraulic physiology and other quantitative traits [81]. Both 259 

historical and current data from provenance trials are being used for quantitative genetic 260 

studies, but these data are underutilized for parameterizing models.  261 

Concluding remarks and future directions 262 

Most current DVMs describe species or PFTs by a single set of properties that is static in 263 

space and time. Empirical data show this is a crude approximation at best, as genetic and 264 

phenotypic diversity allow for plastic responses and long-term adaptations to environmental 265 

conditions, also via epigenetic inheritance. 266 

 267 

We suggest that a new generation of trait-flexible vegetation models is needed which 268 

embraces the variability and adaptability of functional traits in vegetated ecosystems. An 269 

ideal model would explicitly account for phenotypic plasticity as well as genetic and 270 

epigenetic mechanisms in a spatio-temporal context. Such a model would allow researchers 271 

not only to quantify the degree to which trait variability buffers diversity and ecosystem 272 

functioning against climate change, but also to improve our mechanistic understanding of the 273 

processes contributing to trait diversity, and thus biodiversity. Trait-flexible models could help 274 

separate the heritable components of trait variability from plastic components, across-275 

generational trait variability, and the influence of biotic and abiotic factors. Inclusion of a wider 276 

range of flexible traits could further help determining the individual contribution of certain 277 

traits to plant fitness.  278 
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 279 

One risk of adding additional processes to existing models is that they become increasingly 280 

complex, difficult to parameterize, and thus be prone to higher uncertainty [82] [83]. 281 

Countering that is the potential to increasingly rely on optimality-based approaches in model 282 

components. In principle, these approaches should allow models to be at least as powerful 283 

as standard approaches but would require fewer inputs (e.g. [68,69,84,85]). In practice, 284 

compromises will have to be made between accuracy, realism, and generality [83] (see also 285 

Outstanding Questions), but we believe that immediate progress is possible in the areas that 286 

we have highlighted in this Opinion piece. 287 

  288 
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Figure legends 636 

Figure 1 - Conceptual figure of trait variability. Rectangles represent states (genotype or 637 

phenotype) and ovals represent processes driving variability. The top half represents 638 

individual-level processes determining trait variability within a lifetime. The bottom half 639 

represents community- or population-level processes that influence variability between 640 

generations. Dashed arrows represent how genetic and plasticity can trigger changes in 641 

phenotype within a lifetime of an individual.  642 

 643 

Figure I Box 3: Physio-demo-genetic (PDG) models: outline and an application. A) 644 

Conceptual framework of PDG models. PDG models couple: (i) a biophysical module to simulate 645 

carbon and water fluxes at the tree level using climate observations; (ii) a forest dynamics module 646 

to calculate demographic rates for adult trees (growth, mortality, and reproduction) based on 647 

carbohydrate reserves, and to simulate ecological processes across the life cycle; and, (iii) a 648 

quantitative genetics module relating genotype to the phenotype of one or more functional traits. 649 

B) (left) Latitudinal cline of chilling (i.e. low temperature) requirements (Sc∗) and (right) 650 

dependency of forcing (i.e. high temperature) requirements (Sf∗) on average temperature after 400 651 

years of simulation. Initially, both Sc∗ and Sf∗ start with a single value at all locations. (reproduced 652 

from [76]). 653 

  654 
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Additional material (3 text boxes, 1 table, and Glossary) 655 
 656 

Box 1 Dynamic vegetation models – an overview 657 

The overarching goal of dynamic vegetation models is to describe the functioning of vegetated 658 

ecosystems by modelling the key processes that drive vegetation dynamics: primary production, 659 

competition, water and nutrient cycles (Figure I, see also [40,41]). These processes are simulated in 660 

response to abiotic and biotic drivers. 661 

 662 

Models differ in their emphasis on different processes and scales. Some models concentrate on 663 

shorter time scales, with a focus on productivity and allocation as well as short-term feedbacks such 664 

as water and nutrients. Other models also consider succession and changes in community structure 665 

as a result of mortality, competition, and disturbances [55]. Global models are often used to study 666 

general patterns in vegetation composition or can be coupled to climate models to examine 667 

vegetation-atmosphere feedbacks [1]. At the local end of the spectrum, we find forest models focusing 668 

on ecophysiology, adaptation, and forest management [41,55]. Despite these differences in the scale 669 

of interest, most models create their predictions by simulating a local community or ecosystem, which 670 

is then upscaled to the desired resolution. As a result, most global models can and are also used to 671 

model stand-scale dynamics. Still, most models do not explicitly consider spatial feedbacks and 672 

dynamics. An exception are so-called landscape models, which are spatially explicit and can 673 

reproduce spatial processes such as fire or insect outbreaks [64]. 674 

 675 

Functional diversity is typically implemented by assigning different model parameters for each species 676 

or plant functional type (PFT). The main aim of the PFT concept is to reduce the, often large, 677 

taxonomic diversity to a small number of manageable vegetation types, such as deciduous temperate 678 

forests, evergreen boreal forests, continental grasslands, etc [86]. An alternative to this species or 679 

type-centered paradigm are trait-based models. These drop the species concept in favor of describing 680 

individual plants by a set of traits, emerging from general correlations and dependencies such as the 681 

leaf and stem economics spectra (e.g., [46,56,87]).  682 

 683 

 684 
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 685 

BOX 2: State-of-the-art of models including intraspecific trait variability 686 

 687 
Within the ecological modelling literature, we identified three main approaches for including plastic 688 

trait variability. See supplementary material for a complete list of models and methods. 689 

 690 

1.       Plastic models of intraspecific variability 

General 

approach 
Plasticity is described through equations of the physiological response to 

a change in environmental conditions. For example, acclimation of 

photosynthesis is described by an equation describing the response of 

maximum photosynthetic rate in relation to leaf nitrogen concentration 

[48]. 

Advantages - Allows plant responses to be simulated in different environments 

and ecosystems, as equations are used to describe the general 

functioning of plant ecophysiology. 

Limitations - Difficult to determine generalizable functions applicable to different 

plants and conditions.  

- By describing only one plastic response, related counter-responses 

might be missing because physiological processes are interrelated. 

Examples PnET-CN [49]; IBM-Esther [47]; ORCHIDEE-NP [48]  

2.        Models based on prescribed trait distributions 

General approach Well-established trade-offs (e.g., leaf- and wood-economic spectra) are used to 

assign and constrain trait values corresponding to model parameters. Trait 

values are sampled from empirical trait distribution generated from plant trait 

databases (e.g. [14]) or local measurements. Different trait values are assigned 

to individual plants. 
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Advantages - No major modification of model structure necessary. 

- Allows studying the effects of selection and trait variability. 

- Many data are available for traits across the leaf and stem-economic 

spectrum. 

Limitations - Ongoing adaptation to changing local environmental conditions is not 

simulated, which implies no trait evolution. 

- No trade-offs or constraints, potentially leading to unrealistic combinations 

of traits 

- A more detailed description of intraspecific / interspecific variability is 

impossible due to the lack of a mechanistic underpinning corresponding to 

the real ecological processes. This limitation makes predictions from such a 

model somewhat questionable. 

- Not bound to any particular spatial scale and can potentially represent a 

large number of combinations of traits but it is not clear if these 

combinations represent actual species. 

Examples ArcVeg [88]; Ecotone [89]; CABLE [90]. 

3.        Eco-evolutionary models (species or trait-based) 

General 

approach 

Concepts from quantitative genetics are used to simulate adaptive evolution; 

trait values are determined by the genetic contribution of one to several loci 

associated with a particular trait. Trait distributions emerge from some or all of 

the following processes: heritability, mutation, gene flow. A detailed example is 

presented in Box 3. 

Advantages             Trait- and species-based models: 

- Simulates the rate of adaptation to changes of environmental drivers from 

first principles 

- Allows simulating adaptive responses of plastic and non-plastic traits 

- The equations controlling the quantitative genetics are first order algebraic 
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(easily computable). 

             Trait-based models only: 

- Avoids technical and data limitations associated with working at the species 

level. While species-level trait data are often difficult to obtain, community-

level relationships are relatively well described. 

- Inter- and intraspecific variability are both covered 

- By applying selection on the initial trait space, functional diversity patterns 

at the macro scale emerge, e.g. observed clines in traits across 

environmental gradients. 

Limitations - Requires insight of genetic architecture of traits (distribution of allelic 

effects in the population, number of alleles and loci determining the 

trait, interactions between alleles and/or loci); Until now, only simple 

genotype-phenotype relationships are included (e.g., no epigenetics 

or gene activation) 

- Requires knowledge on pollen and seed dispersal as well as mating 

system 

- Because of computation costs, only a subset of traits can evolve, and 

need to be selected.  

Trait-based models only: 

- Plants are defined by sets of traits not directly attributable to any species, 

difficult to connect to species-specific data for validation and initialization 

purposes. 

Examples aDGVM [56]; FORGEM [76]; PDG [67]; Jedi-DGVM [87] 

 691 
  692 
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Box 3 - Integrating physiology, demography and genetics in forest trees 693 

with Physio-demo-genetic models 694 

 695 
 696 

Physio-demo-genetic (PDG) models integrate physiological, demographic, and evolutionary 697 

processes. PDGs have been developed to better understand the interplay among plasticity 698 

and genetic adaptation and the effects of both processes on tree population dynamics under 699 

global change [67,76,91]. The advantage of PDG models is their ability to account for the 700 

variability in functional traits due to both standing genetic variation and evolutionary change 701 

in response to changing local environmental conditions. 702 

 703 

In such models, trait values are modeled following a classical quantitative genetic model 704 

(Figure IA) and are thus inherited by a tree’s offspring. As reproduction, growth, and survival 705 

of individual trees depend on their particular trait constellation, the interaction between the 706 

biophysical- and the demographic model results in a trait-fitness relationship for the particular 707 

environmental conditions. PDGs have been applied to examine the adaptation of the timing 708 

of budburst (TBB) along altitudinal or latitudinal gradients of Fagus sylvatica (the European 709 

beech). Simulations show that few generations were sufficient to develop non-monotonic 710 

genetic differentiation in the TBB along the local climatic gradient (Figure IB).  711 

  712 
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Glossary Box  713 

Acclimatization/acclimation: plastic response of an individual to environmental change 714 

within its lifetime, often important on short timescales (e.g., months/seasons). We consider 715 

the two terms as synonyms in the broadest sense, without distinction between natural or 716 

controlled environments.  717 

Adaptation: genetic response to selection resulting in genetic and phenotypic changes 718 

tween generations. Natural selection relies on differential fitness of individuals with different 719 

phenotypes. 720 

Common garden experiment / provenance trial: a classic experimental design to test for 721 

heritable differences between populations/provenances, consisting of planting seedlings or 722 

seeds of the same family or species, but from different geographical origin or context, in the 723 

same location. 724 

Dynamic vegetation models (DVM, related: land surface models, ecosystem models, 725 

process-based vegetation models, terrestrial biosphere models, etc.): a group of 726 

models that dynamically simulate the succession, distribution, and structure of natural 727 

vegetation, using mostly mechanistic representations of large-scale vegetation processes.  728 

Eco-evolutionary dynamics: the interplay of ecological and evolutionary processes at the 729 

same time scales. 730 

Ecological strategy: the manner in which a species obtains and uses resources, interacts 731 

with other organisms, copes with (and is adapted to) environmental stresses and, in the end, 732 

ensures genetic continuity among generations. 733 

Epigenetic: heritable changes in gene expression that are not caused by mutations of the 734 

DNA sequence. The induced phenotypic changes (due for instance to DNA methylation) are 735 

potentially reversible, and thus less stable than changes due to DNA sequence mutation. 736 
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Evolvability: the capacity of a biological system for adaptive evolution, and thus the ability to 737 

adapt to future environments through evolutionary processes.  738 

Fitness: expected lifetime reproductive success of a phenotype or genotype, frequently 739 

expressed as a result of abiotic and biotic processes.  740 

Genetic architecture: the number of loci determining a given trait and whether a locus acts 741 

on several traits (pleiotropy); the number of allele per loci and their effects on each trait, the 742 

degree of linkage between loci, and interactions between loci (epistasis). 743 

Genotype: a set of genes that determine the phenotype.   744 

Mating system: determines who mates with whom in a species or population, and includes 745 

the self-pollination rate, the rate of pollen immigration and the variances of individual 746 

fecundities. The mating system determines the level of genetic drift, the level of inbreeding of 747 

the offspring, and, through inbreeding depression, the dynamics of natural regeneration. 748 

Model parameter: a variable in an equation or algorithm describing (part of) a mechanism or 749 

process. In dynamic vegetation models, parameters can define traits or properties of 750 

processes included in the model. 751 

Phenotype: a set of traits  752 

Trait or phenotypic variability: the variation in phenotypes between species (interspecific) 753 

or within and among populations of a species (intraspecific) which can arise from genetic and 754 

epigenetic variation, and/or from plastic responses to the environment. 755 

Plant functional traits: observable characteristics of a plant, including morphological, 756 

physiological and phenological characteristics. Traits influence the demographic and 757 

reproductive performances or ecological functions of a plant. 758 
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Plant Functional Type (PFT): The PFT concept classically refers to aggregating functionally 759 

similar species into a single group (i.e., functional type). In principle, PFTs could also be 760 

defined to classify variability within a species. 761 

Plasticity: the phenomenon of the same genotype producing different phenotypes in 762 

response to different environmental stimuli. Plasticity includes acclimatization/acclimation.  763 

Provenance: variety of a tree species from a well-defined geographic area.  764 

Rapid evolution: the response to selection within a few generations, e.g. through selection 765 

on standing diversity and recombination. 766 

(Natural) selection: the main mechanism of evolution relying on differential survival and/or 767 

reproductive success of individuals with different phenotypes. Selection affects the standing 768 

diversity. 769 

Standing diversity: existing genetic diversity within a population. 770 

Trade-off: trade-offs describe situations where further investment of resources in some trait 771 

or process necessitates less investment in another trait or process.   772 



35 
 

TABLE 1 - Traits with their reported sources of intraspecies variability categorized by class 773 

or process type, followed by key empirical correlations or constraints and DVMs including 774 

a trait-flexible implementation a,b,c,d. The full list of models and details on their 775 

implementation of flexible traits can be found in the supplementary material.  776 

Class/ 

Process 

Trait Reported 

within-

species 

variation: 

source not 

distinguish

ed 

Evidence 

for genetic/ 

epigenetic 

link to 

variation 

Variation 

from 

plasticity 

Empirical 

key 

correlations 

or 

constraints 

with other 

traits or 

processes 

Trait 

variability 

in current 

models 

Photosynth

esis 

Maximum 

photosynthet

ic rate, Vcmax 

[92] [93] [93–96]  Positively 

correlated 

with  leaf 

nitrogen, 

phosphorou

s and 

specific leaf 

area [94,97–

99] 

LPJmL-FIT 

[46], MATEY 

[85] 

Leaf mass 

per area (g 

m-2) or its 

inverse, 

specific leaf 

area (cm2g-

1) 

[100–103] [27,104,104–

107] 

[95] Correlated 

negatively 

with leaf 

lifespan, 

positively 

with leaf 

nitrogen, 

phosphorou

s and dark 

respiration 

[13,86]. 

Higher at 

more arid 

sites and 

higher 

irradiance 

LPJmL-fit 

[46], MATEY 

[85], LM3-

PPA [110] 
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sites 

[108,109] 

Nitrogen 

content (g 

m-2) 

[102,103] [27,107,111] [71]  Higher at 

more arid 

sites, higher 

irradiance 

[108,112] 

CABLE [90], 

MATEY [85], 

TFS [113] 

Stomatal 

conductance 

(gw) 

[114]  [27,115] [116,117] Assimilation 

rate 

higher at low 

soil 

phosphorus 

[118] 

- 

Respiration Proportional 

change in 

respiration 

per 10 C 

increase in 

temperature 

(Q10) 

[119] - [120,121] Two types of 

acclimation: 

1- 

adjustments 

in the Q10 

and 2- 

changes in 

the 

enzymatic 

capacity of 

the 

respiratory 

system. 

PnET‐CN 

[49] 

Number of 

mitochondria 

per cell 

[122] - [123] Respiration, 

growth, 

acclimation 

at high CO2 

[123]. 

- 

Leaf 

respiration in 

darkness 

and in the 

light 

[103] [27] [95,120] Leaf dark 

respiration 

varies in 

relation to 

site climate 

[124]. 

LM3-PPA 

[110] 

Wood/ 

leaf 

Wood 

density 

[125,126] [104,127,128] [129] Connections 

to growth 

LPJmL-FIT 

[46], 
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structure rate and 

mortality. 

Higher at 

more arid 

sites [125]. 

aDGVM2 

[56], TFS 

[113] 

Wood and 

sapwood 

hydraulic 

conductivity 

and 

anatomy 

(vessel 

Lumen area, 

ring-width). 

Hydraulic 

plasticity 

and 

P50d 

[126,130] [104,128]  [131–135] Globally, 

higher at 

wetter sites, 

higher at 

warmer sites 

[136,137] 

- 

Herbivory 

defense 

(plant 

secondary 

metabolites, 

spines) or 

serotiny (fire 

resistance) 

[138] [138–141]  [142] Defense-

growth 

trade-off 

influences 

allocation 

strategies 

[143]. 

- 

Bark 

thickness 

[144] [145,146] [145] Thicker in 

sites with 

more 

frequent fire 

and/or more 

frequent/sev

ere drought, 

and hotter 

sites 

[144,147,14

8] 

LPX [149] 

Phenology Timing of 

budburst 

[150] [151–153]   [151] constraints: 

duration 

Forgem [76], 

PDG [67]   
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growing 

season vs 

frost 

damage 

[24,153] 

Timing of 

leaf fall / 

growth 

cessation 

[154] [24] [155] constraints: 

duration 

growing 

season vs 

frost 

damage 

[24,153]. 

Nutrient 

resorption 

[154] 

- 

Frost 

hardiness 

- [27] [156,157] constraints: 

duration 

growing 

season vs 

frost 

damage 

[156] 

Forgem, 

Forgro [76] 

Allocation Biomass 

compartmen

ts, 

allometries 

(leaf:fine 

root, 

diameter:hei

ght) 

[158] [27,105,111] [111,159] Growth, 

stem and 

leaf 

economics 

spectra 

Jedi-DGVM 

[87], 

aDGVM2 

[56] 

Leaf area /  

sapwood 

area ratio 

[126] [104]  [131,132] Globally, 

lower at 

drier sites, 

and in 

species with 

smaller 

leaves 

and/or lower 

specific leaf 

- 
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area [137] 

Reproductio

n 

Seed size [160,161]  [162] [57,163] Height, 

seedling 

survival, 

dispersal 

distance 

[8,160].  

hybrid-DVM 

[164], 

aDGMV2 

[56] 

Germination 

rate 

[161] [27,105] 

 

[165] Recruitment Esther IBM 

[47] 

 777 
 778 
a The source of variability, when determined, is classified as plastic or genetic or both. It also 779 

provides a brief description of key correlation with other traits and processes.  780 

b  A list of examples is presented in which dynamic vegetation models have implemented trait 781 

variability for the specified trait.  782 

c This table is not an exhaustive list, thus more references in a cell do not necessarily imply a 783 

higher number of studies, when possible at least 2 examples per cell were included. Primary 784 

literature was preferred over review articles. The full list of models and reviewed articles can be 785 

found in the supplementary material. 786 

d P50: water potential at which 50% of hydraulic conductivity is lost 787 
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