Details zur Publikation

Referenztyp Zeitschriften
DOI / URL Link
Volltext Akzeptiertes Manuskript
Titel (primär) Simulation of dual carbon–bromine stable isotope fractionation during 1,2-dibromoethane degradation
Autor Jin, B.; Nijenhuis, I.; Rolle, M.;
Journal / Serie Isotopes in Environmental and Health Studies
Erscheinungsjahr 2018
Department ISOBIO;
Band/Volume 54
Heft 4
Sprache englisch;
POF III (gesamt) T41;
Keywords Bromine-81; carbon-13; ethylene dibromide; isotope effects; mathematical modelling; pollutant; reaction mechanism
Abstract We performed a model-based investigation to simultaneously predict the evolution of concentration, as well as stable carbon and bromine isotope fractionation during 1,2-dibromoethane (EDB, ethylene dibromide) transformation in a closed system. The modelling approach considers bond-cleavage mechanisms during different reactions and allows evaluating dual carbon–bromine isotopic signals for chemical and biotic reactions, including aerobic and anaerobic biological transformation, dibromoelimination by Zn(0) and alkaline hydrolysis. The proposed model allowed us to accurately simulate the evolution of concentrations and isotope data observed in a previous laboratory study and to successfully identify different reaction pathways. Furthermore, we illustrated the model capabilities in degradation scenarios involving complex reaction systems. Specifically, we examined (i) the case of sequential multistep transformation of EDB and the isotopic evolution of the parent compound, the intermediate and the reaction product and (ii) the case of parallel competing abiotic pathways of EDB transformation in alkaline solution.
ID 20417
dauerhafte UFZ-Verlinkung https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=20417
Jin, B., Nijenhuis, I., Rolle, M. (2018):
Simulation of dual carbon–bromine stable isotope fractionation during 1,2-dibromoethane degradation
Isot. Environ. Health Stud. 54 (4), 418 - 434