Publication Details

Category Text Publication
Reference Category Journals
DOI 10.1111/j.1574-6941.2010.00889.x
Title (Primary) Elucidating MTBE degradation in a mixed consortium using a multidisciplinary approach
Author Bastida, F.; Rosell, M.; Franchini, A.G.; Seifert, J.; Finsterbusch, S.; Jehmlich, N. ORCID logo ; Jechalke, S.; von Bergen, M.; Richnow, H.H.
Source Titel FEMS Microbiology Ecology
Year 2010
Department ISOBIO; PROTEOM
Volume 73
Issue 2
Page From 370
Page To 384
Language englisch
Keywords protein-stable isotope probing; MTBE degradation; isotope fractionation
Abstract The structure and function of a microbial community capable of biodegrading methyl-tert-butyl ether (MTBE) was characterized using compound-specific stable isotope analysis (CSIA), clone libraries and stable isotope probing of proteins (Protein-SIP). The enrichment culture (US3-M), which originated from a gasoline-impacted site in the United States, has been enriched on MTBE as the sole carbon source. The slope of isotopic enrichment factors (?C of -2.29±0.03?; ?H of -58±6?) for carbon and hydrogen discrimination (?d2H/?d13C) was on average equal to ?=24±2, a value closely related to the reaction mechanism of MTBE degradation in Methylibium petroleiphilum PM1. 16S rRNA gene libraries revealed sequences belonging to M. petroleiphilum PM1, Hydrogenophaga sp., Thiothrix unzii, Rhodobacter sp., Nocardiodes sp. and different Sphingomonadaceae bacteria. Protein-SIP analysis of the culture grown on 13C-MTBE as the only carbon source revealed that proteins related to members of the Comamonadaceae family, such as Delftia acidovorans, Acidovorax sp. or Comamonas sp., were not 13C-enriched, whereas proteins related to M. petroleiphilum PM1 showed an average incorporation of 94.5 atom%13C. These results indicate a key role for this species in the degradation of MTBE within the US3-M consortia. The combination of CSIA, molecular biology and Protein-SIP facilitated the analysis of an MTBE-degrading mixed culture from a functional and phylogenetic point of view.
Persistent UFZ Identifier https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=9775
Bastida, F., Rosell, M., Franchini, A.G., Seifert, J., Finsterbusch, S., Jehmlich, N., Jechalke, S., von Bergen, M., Richnow, H.H. (2010):
Elucidating MTBE degradation in a mixed consortium using a multidisciplinary approach
FEMS Microbiol. Ecol. 73 (2), 370 - 384 10.1111/j.1574-6941.2010.00889.x