Publication Details

Category Text Publication
Reference Category Journals
DOI 10.21105/joss.08056
Licence creative commons licence
Title (Primary) DeepTrees: Tree crown segmentation and analysis in remote sensing imagery with PyTorch
Author Khan, T. ORCID logo ; Arnold, C.; Grover, H.
Source Titel Journal of Open Source Software
Year 2025
Department BZF
Volume 10
Issue 114
Page From art. 8056
Language englisch
Topic T5 Future Landscapes
Data and Software links https://doi.org/10.5281/zenodo.17371394
Keywords Deep Learning; Remote Sensing; Geospatial; Vegetation Ecology
Abstract DeepTrees is a Python package for tree crown segmentation and analysis in remote sensing imagery. It uses PyTorch for training and predicting on large-scale datasets. Designed for direct integration with geospatial workflows, DeepTrees provides data loaders, transforms, and utility functions, enabling efficient experimentation in tree crown segmentation and tree traits analysis.
Persistent UFZ Identifier https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=31576
Khan, T., Arnold, C., Grover, H. (2025):
DeepTrees: Tree crown segmentation and analysis in remote sensing imagery with PyTorch
Journal of Open Source Software 10 (114), art. 8056 10.21105/joss.08056