Publication Details

Category Text Publication
Reference Category Journals
DOI 10.1038/s41597-025-04447-5
Licence creative commons licence
Title (Primary) DeepExtremeCubes: Earth system spatio-temporal data for assessing compound heatwave and drought impacts
Author Ji, C.; Fincke, T.; Benson, V.; Camps-Valls, G.; Fernández-Torres, M.-Á.; Gans, F.; Kraemer, G.; Martinuzzi, F.; Montero, D.; Mora, K.; Pellicer-Valero, O.J.; Robin, C.; Söchting, M.; Weynants, M.; Mahecha, M.D.
Source Titel Scientific Data
Year 2025
Department iDiv; RS
Volume 12
Page From art. 149
Language englisch
Topic T5 Future Landscapes
Data and Software links https://doi.org/10.25532/OPARA-703
https://doi.org/10.5281/zenodo.11546130
https://doi.org/10.5281/zenodo.13904460
Supplements https://static-content.springer.com/esm/art%3A10.1038%2Fs41597-025-04447-5/MediaObjects/41597_2025_4447_MOESM1_ESM.pdf
Abstract With climate extremes’ rising frequency and intensity, robust analytical tools are crucial to predict their impacts on terrestrial ecosystems. Machine learning techniques show promise but require well-structured, high-quality, and curated analysis-ready datasets. Earth observation datasets comprehensively monitor ecosystem dynamics and responses to climatic extremes, yet the data complexity can challenge the effectiveness of machine learning models. Despite recent progress in deep learning to ecosystem monitoring, there is a need for datasets specifically designed to analyse compound heatwave and drought extreme impact. Here, we introduce the DeepExtremeCubes database, tailored to map around these extremes, focusing on persistent natural vegetation. It comprises over 40,000 globally sampled small data cubes (i.e. minicubes), with a spatial coverage of 2.5 by 2.5 km. Each minicube includes (i) Sentinel-2 L2A images, (ii) ERA5-Land variables and generated extreme event cube covering 2016 to 2022, and (iii) ancillary land cover and topography maps. The paper aims to (1) streamline data accessibility, structuring, pre-processing, and enhance scientific reproducibility, and (2) facilitate biosphere dynamics forecasting in response to compound extremes.
Persistent UFZ Identifier https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=30414
Ji, C., Fincke, T., Benson, V., Camps-Valls, G., Fernández-Torres, M.-Á., Gans, F., Kraemer, G., Martinuzzi, F., Montero, D., Mora, K., Pellicer-Valero, O.J., Robin, C., Söchting, M., Weynants, M., Mahecha, M.D. (2025):
DeepExtremeCubes: Earth system spatio-temporal data for assessing compound heatwave and drought impacts
Sci. Data 12 , art. 149 10.1038/s41597-025-04447-5