Publication Details

Category Text Publication
Reference Category Journals
DOI 10.1016/j.agee.2024.109259
Licence creative commons licence
Title (Primary) Grasslands support more diverse and resilient earthworm communities to climate change than croplands in Central Europe
Author Liu, Q.; Eisenhauer, N.; Scheu, S.; Reitz, T. ORCID logo ; Schädler, M.
Source Titel Agriculture, Ecosystems & Environment
Year 2025
Department BZF; BOOEK; iDiv
Volume 377
Page From art. 109259
Language englisch
Topic T5 Future Landscapes
Supplements https://ars.els-cdn.com/content/image/1-s2.0-S0167880924003773-mmc1.docx
Keywords Global change; Future climate; Intensive land use; Earthworms; Grassland; Cropland
Abstract Diversity and community composition of earthworms, key drivers of ecosystem functions, are increasingly threatened by global change, including climate and land-use change. However, empirical evidence for interactions of these concurrent drivers in affecting earthworm communities is scarce. Here, we investigated the effects of an experimentally imposed climate change scenario, including warming and altered precipitation patterns, and land use with two croplands (both conventional farming and organic farming characterize a three-year crop rotation) and two grasslands (intensively-used meadow and extensively-used meadow) on earthworm communities across different seasons and years in a field experiment. Compared with grasslands, earthworms in croplands have lower species richness (-26 %), abundance (-80 %), and biomass (-73 %), particularly the abundance of juveniles (-83 %) and Aporrectodea rosea (-76 %) as well as the biomass of juveniles (-84 %), A. rosea (-72 %), Octolasion cyaneum (-47 %), and Lumbricus terrestris (-83 %). Due to extreme droughts in Central Europe from 2018 to 2020, earthworm abundance and biomass were low across land-use types, but in grassland they increased (abundance: +80 %; biomass: +85 %) in 2021 presumably due to increased moisture conditions. Main effects of experimental climate change and intensified management practices as well as interaction of experimental climate change and land use on abundance and biomass of earthworms were non-significant. Notably, experimental climate change and land use interactively altered earthworm community composition, with the most pronounced difference between ambient and future climate in croplands than in grasslands. This indicates that earthworm community composition more sensitively reflects changes in environmental conditions than earthworm abundance and biomass, but the latter two negatively responded to prolonged drought conditions. Our results indicate that grasslands have a higher resilience of earthworm populations to buffer adverse environmental conditions than croplands. Overall, this study provides a comprehensive overview of the response of earthworms to inter-annual climatic variability and experimental climate change under different land-use types.
Persistent UFZ Identifier https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=29552
Liu, Q., Eisenhauer, N., Scheu, S., Reitz, T., Schädler, M. (2025):
Grasslands support more diverse and resilient earthworm communities to climate change than croplands in Central Europe
Agric. Ecosyst. Environ. 377 , art. 109259 10.1016/j.agee.2024.109259