Publication Details

Category Text Publication
Reference Category Journals
DOI 10.1111/2041-210x.14300
Licence creative commons licence
Title (Primary) Connectivity conservation planning through deep reinforcement learning
Author Equihua, J.; Beckmann, M. ORCID logo ; Seppelt, R.
Source Titel Methods in Ecology and Evolution
Year 2024
Department CLE
Volume 15
Issue 4
Page From 779
Page To 790
Language englisch
Topic T5 Future Landscapes
Data and Software links https://doi.org/10.5281/zenodo.10618900
Keywords connectivity conservation planning; deep reinforcement learning; ecological restoration; machine learning; spatial optimisation; systematic conservation planning
Abstract 1. The United Nations has declared 2021–2030 the decade on ecosystem restoration with the aim of preventing, stopping and reversing the degradation of the ecosystems of the world, often caused by the fragmentation of natural landscapes. Human activities separate and surround habitats, making them too small to sustain viable animal populations or too far apart to enable foraging and gene flow. Despite the need for strategies to solve fragmentation, it remains unclear how to efficiently reconnect nature. In this paper, we illustrate the potential of deep reinforcement learning (DRL) to tackle the spatial optimisation aspect of connectivity conservation planning.
2. The propensity of spatial optimisation problems to explode in complexity depending on the number of input variables and their states is and will continue to be one of its most serious obstacles. DRL is an emerging class of methods focused on training deep neural networks to solve decision-making tasks and has been used to learn good heuristics for complex optimisation problems. While the potential of DRL to optimise conservation decisions seems huge, only few examples of its application exist.
3. We applied DRL to two real-world raster datasets in a connectivity planning setting, targeting graph-based connectivity indices for optimisation. We show that DRL converges to the known optimums in a small example where the objective is the overall improvement of the Integral Index of Connectivity and the only constraint is the budget. We also show that DRL approximates high-quality solutions on a large example with additional cost and spatial configuration constraints where the more complex Probability of Connectivity Index is targeted. To the best of our knowledge, there is no software that can target this index for optimisation on raster data of this size.
4. DRL can be used to approximate good solutions in complex spatial optimisation problems even when the conservation feature is non-linear like graph-based indices. Furthermore, our methodology decouples the optimisation process and the index calculation, so it can potentially target any other conservation feature implemented in current or future software.
Persistent UFZ Identifier https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=28756
Equihua, J., Beckmann, M., Seppelt, R. (2024):
Connectivity conservation planning through deep reinforcement learning
Methods Ecol. Evol. 15 (4), 779 - 790 10.1111/2041-210x.14300