Publication Details

Category Text Publication
Reference Category Journals
DOI 10.1002/jpln.202200239
Licence creative commons licence
Title (Primary) 3–4D soil model as challenge for future soil research: Quantitative soil modeling based on the solid phase
Author Gerke, H.H.; Vogel, H.-J.; Weber, T.K.D.; van der Meij, W.M.; Scholten, T.
Source Titel Journal of Plant Nutrition and Soil Science
Year 2022
Department BOSYS
Volume 185
Issue 6
Page From 720
Page To 744
Language englisch
Topic T5 Future Landscapes
Keywords coevolution; dynamics; solid phase; virtual soil
Abstract

A 3–4D soil model represents a logical step forward from one-dimensional soil columns (1D), two-dimensional soil maps (2D), and three-dimensional soil volumes (3D) toward dynamic soil models (4D), with time as the fourth dimension. The challenge is to develop modeling tools that account for the states of soil properties, including the spatial structure of solids and pores, as well as their dynamics, including soil mass and solute transfers in landscapes. Our envisioned 3–4D soil model approach aims at improving the capability to predict fundamental soil functions (e.g., plant growth, storage, matter fluxes) that provide ecosystem services in the socioeconomic context.

This study provides a structured overview on current soil models, challenges, open questions, and urgent research needs for developing a 3–4D soil model. A 3–4D soil model should provide an inventory of spatially distributed and temporally variable soil properties. As basis for this, we propose a mass balance model for the solid phase, which needs to be supplemented by a model describing its structure. This should eventually provide adequate 3D parameter sets for the numerical modeling of soil functions (e.g., flow and transport). The target resolution is decameters in the horizontal plane and centimeters to decimeters in the vertical direction to represent characteristic soil properties and soil horizons. The actual state of soils and their properties can be estimated from spatial data that represent the soil forming factors, with the use of machine learning tools. Improved modeling of the dynamics of soil bulk density, biological processes, and the pore structure are required to relate the solid mass balance to matter fluxes.

A 3–4D soil model can be built from several types of modeling approaches. We distinguish between (1) process models that simulate mass balances, fluxes and soil structure dynamics, (2) statistical pedometric models using machine learning and geostatistics to estimate the soil inventory within landscapes, and (3) pedotransfer functions to link observable attributes to specific model parameters required to simulate soil functions including water and matter fluxes. This should provide the prerequisites to predict the spatial distribution of soil functions and their changes in response to external forcing.

This endeavor can draw upon many already established models and techniques, yet combining them into a newly created 3–4D soil model is a truly an ambitious, but promising task. The core of such a model is the bookkeeping of the solid mass together with soil structure, while accounting for biogeochemical and mechanical processes. The presented concepts are ambitious in context for research avenues toward the improvement of soil modeling by conjoining methods from a wide range of disciplines, including geological, geophysical, pedological, and remote sensing and visualization applications. The paper reviews and outlines research tools and needs for the 3-D, spatially continuous representation of relevant soil properties and the modeling to represent the dynamics of soil properties and soil functions.

Persistent UFZ Identifier https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=26778
Gerke, H.H., Vogel, H.-J., Weber, T.K.D., van der Meij, W.M., Scholten, T. (2022):
3–4D soil model as challenge for future soil research: Quantitative soil modeling based on the solid phase
J. Plant Nutr. Soil Sci. 185 (6), 720 - 744 10.1002/jpln.202200239