Publication Details

Category Text Publication
Reference Category Journals
DOI 10.1002/ece3.9456
Licence creative commons licence
Title (Primary) Simulation of Varroa mite control in honey bee colonies without synthetic acaricides: Demonstration of Good Beekeeping Practice for Germany in the BEEHAVE model
Author Schödl, I.; Odemer, R.; Becher, M.A.; Berg, S.; Otten, C.; Grimm, V.; Groeneveld, J.
Source Titel Ecology and Evolution
Year 2022
Department OESA
Volume 12
Issue 11
Page From e9456
Language englisch
Topic T5 Future Landscapes
Keywords acaricides; BEEHAVE; beekeeping; drones; education; Honey bees; modelling; pest control, varroa mite
Abstract The BEEHAVE model simulates the population dynamics and foraging activity of a single honey bee colony (Apis mellifera) in great detail. Although it still makes numerous simplifying assumptions, it appears to capture a wide range of empirical observations. It could, therefore, in principle, also be used as a tool in beekeeper education, as it allows the implementation and comparison of different management options. Here, we focus on treatments aimed at controlling the mite Varroa destructor. However, since BEEHAVE was developed in the UK, mite treatment includes the use of a synthetic acaricide, which is not part of Good Beekeeping Practice in Germany. A practice that consists of drone brood removal from April to June, treatment with formic acid in August/September, and treatment with oxalic acid in November/December. We implemented these measures, focusing on the timing, frequency, and spacing between drone brood removals. The effect of drone brood removal and acid treatment, individually or in combination, on a mite-infested colony was examined. We quantify the efficacy of Varroa mite control as the reduction of mites in treated bee colonies compared to untreated bee colonies. We found that drone brood removal was very effective, reducing mites by 90% at the end of the first simulation year after the introduction of mites. This value was significantly higher than the 50–67% reduction expected by bee experts and confirmed by empirical studies. However, literature reports varying percent reductions in mite numbers from 10 to 85% after drone brood removal. The discrepancy between model results, empirical data, and expert estimates indicate that these three sources should be reviewed and refined, as all are based on simplifying assumptions. These results and the adaptation of BEEHAVE to the Good Beekeeping Practice are a decisive step forward for the future use of BEEHAVE in beekeeper education in Germany and anywhere where organic acids and drone brood removal are utilized.
Persistent UFZ Identifier https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=26735
Schödl, I., Odemer, R., Becher, M.A., Berg, S., Otten, C., Grimm, V., Groeneveld, J. (2022):
Simulation of Varroa mite control in honey bee colonies without synthetic acaricides: Demonstration of Good Beekeeping Practice for Germany in the BEEHAVE model
Ecol. Evol. 12 (11), e9456 10.1002/ece3.9456