Publication Details

Category Text Publication
Reference Category Journals
DOI 10.1002/ece3.8248
Licence creative commons licence
Title (Primary) Different responses of soil respiration to environmental factors across forest stages in a Southeast Asian forest
Author Rodtassana, C.; Unawong, W.; Yaemphum, S.; Chanthorn, W.; Chawchai, S.; Nathalang, A.; Brockelman, W.Y.; Tor-ngern, P.
Journal Ecology and Evolution
Year 2021
Department OESA
Volume 11
Issue 21
Page From 15430
Page To 15443
Language englisch
Topic T5 Future Landscapes
Data and Software links
Keywords forest succession; soil moisture; soil organic matter; soil respiration; soil temperature; tropical forests
Abstract Soil respiration (SR) in forests contributes significant carbon dioxide emissions from terrestrial ecosystems and is highly sensitive to environmental changes, including soil temperature, soil moisture, microbial community, surface litter, and vegetation type. Indeed, a small change in SR may have large impacts on the global carbon balance, further influencing feedbacks to climate change. Thus, detailed characterization of SR responses to changes in environmental conditions is needed to accurately estimate carbon dioxide emissions from forest ecosystems. However, data for such analyses are still limited, especially in tropical forests of Southeast Asia where various stages of forest succession exist due to previous land-use changes. In this study, we measured SR and some environmental factors including soil temperature (ST), soil moisture (SM), and organic matter content (OM) in three successional tropical forests in both wet and dry periods. We also analyzed the relationships between SR and these environmental variables. Results showed that SR was higher in the wet period and in older forests. Although no response of SR to ST was found in younger forest stages, SR of the old-growth forest significantly responded to ST, plausibly due to the nonuniform forest structure, including gaps, that resulted in a wide range of ST. Across forest stages, SM was the limiting factor for SR in the wet period, whereas SR significantly varied with OM in the dry period. Overall, our results indicated that the responses of SR to environmental factors varied temporally and across forest succession. Nevertheless, these findings are still preliminary and call for detailed investigations on SR and its variations with environmental factors in Southeast Asian tropical forests where patches of successional stages dominate.
Persistent UFZ Identifier
Rodtassana, C., Unawong, W., Yaemphum, S., Chanthorn, W., Chawchai, S., Nathalang, A., Brockelman, W.Y., Tor-ngern, P. (2021):
Different responses of soil respiration to environmental factors across forest stages in a Southeast Asian forest
Ecol. Evol. 11 (21), 15430 - 15443