Publication Details |
Category | Text Publication |
Reference Category | Journals |
DOI | 10.1038/s41467-021-25824-9 |
Licence | |
Title (Primary) | Community and single cell analyses reveal complex predatory interactions between bacteria in high diversity systems |
Author | Cohen, Y.; Pasternak, Z.; Müller, S.; Hübschmann, T.; Schattenberg, F.; Sivakala, K.K.; Abed-Rabbo, A.; Chatzinotas, A.; Jurkevitch, E. |
Source Titel | Nature Communications |
Year | 2021 |
Department | UMB; iDiv |
Volume | 12 |
Page From | art. 5481 |
Language | englisch |
Topic | T7 Bioeconomy |
Supplements | https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-021-25824-9/MediaObjects/41467_2021_25824_MOESM1_ESM.pdf https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-021-25824-9/MediaObjects/41467_2021_25824_MOESM4_ESM.xlsx https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-021-25824-9/MediaObjects/41467_2021_25824_MOESM5_ESM.xlsx https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-021-25824-9/MediaObjects/41467_2021_25824_MOESM6_ESM.xls |
Abstract | A fundamental question in community ecology is the role of predator–prey interactions in food-web stability and species coexistence. Although microbial microcosms offer powerful systems to investigate it, interrogating the environment is much more arduous. Here, we show in a 1-year survey that the obligate predators Bdellovibrio and like organisms (BALOs) can regulate prey populations, possibly in a density-dependent manner, in the naturally complex, species-rich environments of wastewater treatment plants. Abundant as well as rarer prey populations are affected, leading to an oscillating predatory landscape shifting at various temporal scales in which the total population remains stable. Shifts, along with differential prey range, explain co-existence of the numerous predators through niche partitioning. We validate these sequence-based findings using single-cell sorting combined with fluorescent hybridization and community sequencing. Our approach should be applicable for deciphering community interactions in other systems. |
Persistent UFZ Identifier | https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=25139 |
Cohen, Y., Pasternak, Z., Müller, S., Hübschmann, T., Schattenberg, F., Sivakala, K.K., Abed-Rabbo, A., Chatzinotas, A., Jurkevitch, E. (2021): Community and single cell analyses reveal complex predatory interactions between bacteria in high diversity systems Nat. Commun. 12 , art. 5481 10.1038/s41467-021-25824-9 |