Publication Details

Category Text Publication
Reference Category Journals
DOI 10.1111/1462-2920.15756
Licence creative commons licence
Title (Primary) Metabolic history and metabolic fitness as drivers of anabolic heterogeneity in isogenic microbial populations
Author Calabrese, F.; Stryhanyuk, H.; Moraru, C.; Schlömann, M.; Wick, L.Y.; Richnow, H.H.; Musat, F.; Musat, N.
Source Titel Environmental Microbiology
Year 2021
Department ISOBIO; UMB
Volume 23
Issue 11
Page From 6764
Page To 6776
Language englisch
Topic T7 Bioeconomy
Keywords metabolic heterogeneity; microbial populations; single-cell; heterogeneity index; nanoSIMS; stable isotope labelling
UFZ wide themes ProVIS;
Abstract Microbial populations often display different degrees of heterogeneity in their substrate assimilation, that is, anabolic heterogeneity. It has been shown that nutrient limitations are a relevant trigger for this behavior. Here we explore the dynamics of anabolic heterogeneity under nutrient replete conditions. We applied time-resolved stable isotope probing and nanoscale Secondary Ion Mass Spectrometry (nanoSIMS) to quantify substrate assimilation by individual cells of Pseudomonas putida, P. stutzeri and Thauera aromatica. Acetate and benzoate at different concentrations were used as substrates. Anabolic heterogeneity was quantified by the cumulative differentiation tendency index. We observed two major, opposing trends of anabolic heterogeneity over time. Most often, microbial populations started as highly heterogeneous, with heterogeneity decreasing by various degrees over time. The second, less frequently observed trend, saw microbial populations starting at low or very low heterogeneity, and remaining largely stable over time. We explain these trends as an interplay of metabolic history (e.g. former growth substrate or other nutrient limitations) and metabolic fitness (i.e. the fine-tuning of metabolic pathways to process a defined growth substrate). Our results offer a new viewpoint on the intra-population functional diversification often encountered in the environment, and suggests that some microbial populations may be intrinsically heterogeneous.
Persistent UFZ Identifier
Calabrese, F., Stryhanyuk, H., Moraru, C., Schlömann, M., Wick, L.Y., Richnow, H.H., Musat, F., Musat, N. (2021):
Metabolic history and metabolic fitness as drivers of anabolic heterogeneity in isogenic microbial populations
Environ. Microbiol. 23 (11), 6764 - 6776 10.1111/1462-2920.15756