Publication Details

Category Text Publication
Reference Category Journals
DOI 10.1029/2020WR029474
Licence creative commons licence
Title (Primary) Single-rate dual-domain mass transfer model: Elucidating temperature effects
Author Binder, M.; Hahnewald, A.; Händel, F.; Prommer, H.; Engelmann, C.; Burghardt, D.; Stock, P.; Tritschler, F.; Liedl, R.; Walther, M.
Journal Water Resources Research
Year 2021
Department ENVINF; MET
Volume 57
Issue 4
Page From e2020WR029474
Language englisch
Topic T8 Georesources
Data and Software links
Keywords column experiments; temperature dependence; dual‐domain mass transfer; deuterium; bromide; electrical conductivity measurements
Abstract In this study, the influence of varying temperatures on the transport behavior of conservative solutes in heterogeneous porous media has been investigated. Column flow experiments employing potassium bromide as tracer were conducted at four temperature levels (3 °C, 10 °C, 20 °C, 30 °C) and the measured electrical conductivity (EC) signal was interpreted through inverse modelling. Additional experiments were performed with deuterium‐enriched water at 10 °C and 30 °C. For those experiments, deuterium isotope ratios were analyzed alongside anion and cation concentrations. Obtained EC‐based breakthrough curves showed measurable differences in both the observed peak values and tailing intensities that could be clearly attributed to variations in the experimental temperatures. The EC‐based results were further corroborated by the measured isotope ratios and corresponding anion/cation concentrations, although measured differences were less pronounced. The model‐based interpretation of the results employed the standard advection‐dispersion equation as well as three alternative variants that were all based on the single‐rate dual‐domain mass transfer (DDMT) approach, but embracing varying coupling intensities between the experiments. For all variants transport parameters were determined for EC, bromide, and deuterium, respectively. The estimated ranges of the transport parameters all point towards a direct correlation between the effective DDMT rates and the experimental temperature. The observed correlation directly follows the Arrhenius relationship, but is weaker than the one describing the temperature dependence of the molecular diffusion coefficients, therefore pointing to a contribution of non‐diffusive components.
Persistent UFZ Identifier
Binder, M., Hahnewald, A., Händel, F., Prommer, H., Engelmann, C., Burghardt, D., Stock, P., Tritschler, F., Liedl, R., Walther, M. (2021):
Single-rate dual-domain mass transfer model: Elucidating temperature effects
Water Resour. Res. 57 (4), e2020WR029474