Publication Details

Reference Category Journals
DOI / URL link
Document Shareable Link
Title (Primary) Thresholds for ecological responses to global change do not emerge from empirical data
Author Hillebrand, H.; Donohue, I.; Harpole, W.S.; Hodapp, D.; Kucera, M.; Lewandowska, A.M.; Merder, J.; Montoya, J.M.; Freund, J.A.;
Journal Nature Ecology & Evolution
Year 2020
Department iDiv; PHYDIV;
Volume 4
Issue 11
Language englisch;
POF III (all) T11;
Data links
Abstract To understand ecosystem responses to anthropogenic global change, a prevailing framework is the definition of threshold levels of pressure, above which response magnitudes and their variances increase disproportionately. However, we lack systematic quantitative evidence as to whether empirical data allow definition of such thresholds. Here, we summarize 36 meta-analyses measuring more than 4,600 global change impacts on natural communities. We find that threshold transgressions were rarely detectable, either within or across meta-analyses. Instead, ecological responses were characterized mostly by progressively increasing magnitude and variance when pressure increased. Sensitivity analyses with modelled data revealed that minor variances in the response are sufficient to preclude the detection of thresholds from data, even if they are present. The simulations reinforced our contention that global change biology needs to abandon the general expectation that system properties allow defining thresholds as a way to manage nature under global change. Rather, highly variable responses, even under weak pressures, suggest that ‘safe-operating spaces’ are unlikely to be quantifiable.
ID 23584
Persistent UFZ Identifier
Hillebrand, H., Donohue, I., Harpole, W.S., Hodapp, D., Kucera, M., Lewandowska, A.M., Merder, J., Montoya, J.M., Freund, J.A. (2020):
Thresholds for ecological responses to global change do not emerge from empirical data
Nat. Ecol. Evol. 4 (11), 1502 - 1509