Publication Details

Category Text Publication
Reference Category Journals
DOI 10.1128/spectrum.04578-22
Licence creative commons licence
Title (Primary) Functional potential of soil microbial communities and their subcommunities varies with tree mycorrhizal type and tree diversity
Author Singavarapu, B.; Du, J.; Beugnon, R.; Cesarz, S.; Eisenhauer, N.; Xue, K.; Wang, Y.; Bruelheide, H.; Wubet, T. ORCID logo
Source Titel Microbiology Spectrum
Year 2023
Department BZF; iDiv
Volume 11
Issue 2
Page From e04578-22
Language englisch
Topic T5 Future Landscapes
Supplements https://journals.asm.org/doi/suppl/10.1128/spectrum.04578-22/suppl_file/spectrum.04578-22-s0001.pdf
Keywords co-occurrence network; microbial subcommunities; nutrient cycling, functional potential, tree mycorrhizal type, tree diversity
Abstract Soil microbial communities play crucial roles in the earth’s biogeochemical cycles. Yet, their genomic potential for nutrient cycling in association with tree mycorrhizal type and tree-tree interactions remained unclear, especially in diverse tree communities. Here, we studied the genomic potential of soil fungi and bacteria with arbuscular (AM) and ectomycorrhizal (EcM) conspecific tree species pairs (TSPs) at three tree diversity levels in a subtropical tree diversity experiment (BEF-China). The soil fungi and bacteria of the TSPs’ interaction zone were characterized by amplicon sequencing, and their subcommunities were determined using a microbial interkingdom co-occurrence network approach. Their potential genomic functions were predicted with regard to the three major nutrients carbon (C), nitrogen (N), and phosphorus (P) and their combinations. We found the microbial subcommunities that were significantly responding to different soil characteristics. The tree mycorrhizal type significantly influenced the functional composition of these co-occurring subcommunities in monospecific stands mixtures and two-tree-species mixtures but not in mixtures with more than three tree species (here multi-tree-species mixtures). Differentiation of subcommunities was driven by differentially abundant taxa producing different sets of nutrient cycling enzymes across the tree diversity levels, predominantly enzymes of the P (n = 11 and 16) cycles, followed by the N (n = 9) and C (n = 9) cycles, in monospecific stands and two-tree-species mixtures, respectively. Fungi of the Agaricomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes and bacteria of the Verrucomicrobia, Acidobacteria, Alphaproteobacteria, and Actinobacteria were the major differential contributors (48% to 62%) to the nutrient cycling functional abundances of soil microbial communities across tree diversity levels. Our study demonstrated the versatility and significance of microbial subcommunities in different soil nutrient cycling processes of forest ecosystems.
Persistent UFZ Identifier https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=23561
Singavarapu, B., Du, J., Beugnon, R., Cesarz, S., Eisenhauer, N., Xue, K., Wang, Y., Bruelheide, H., Wubet, T. (2023):
Functional potential of soil microbial communities and their subcommunities varies with tree mycorrhizal type and tree diversity
Microbiol. Spectr. 11 (2), e04578-22 10.1128/spectrum.04578-22