Publication Details

Category Text Publication
Reference Category Journals
DOI 10.1111/gcb.15146
Document Shareable Link
Title (Primary) Microbial processing of plant remains is co‐limited by multiple nutrients in global grasslands
Author Ochoa‐Hueso, R.; Borer, E.T.; Seabloom, E.W.; Hobbie, S.E.; Risch, A.C.; Collins, S.L.; Alberti, J.; Bahamonde, H.A.; Brown, C.S.; Caldeira, M.C.; Daleo, P.; Dickman, C.R.; Ebeling, A.; Eisenhauer, N.; Esch, E.H.; Eskelinen, A.; Fernández, V.; Güsewell, S.; Gutierrez‐Larruga, B.; Hofmockel, K.; Laungani, R.; Lind, E.; López, A.; McCulley, R.L.; Moore, J.L.; Peri, P.L.; Power, S.A.; Price, J.N.; Prober, S.M.; Roscher, C.; Sarneel, J.M.; Schütz, M.; Siebert, J.; Standish, R.J.; Ayuso, S.V.; Virtanen, R.; Wardle, G.M.; Wiehl, G.; Yahdjian, L.; Zamin, T.
Source Titel Global Change Biology
Year 2020
Department iDiv; PHYDIV
Volume 26
Issue 8
Page From 4572
Page To 4582
Language englisch
Keywords carbon cycling and sequestration; decomposition; eutrophication; fertilization; microbial activity; NutNet; nutrient (co‐)limitation
Abstract Microbial processing of aggregate‐unprotected organic matter inputs is key for soil fertility, long‐term ecosystem carbon and nutrient sequestration and sustainable agriculture. We investigated the effects of adding multiple nutrients (nitrogen, phosphorus and potassium plus nine essential macro‐ and micro‐nutrients) on decomposition and biochemical transformation of standard plant materials buried in 21 grasslands from four continents. Addition of multiple nutrients weakly but consistently increased decomposition and biochemical transformation of plant remains during the peak‐season, concurrent with changes in microbial exoenzymatic activity. Higher mean annual precipitation and lower mean annual temperature were the main climatic drivers of higher decomposition rates, while biochemical transformation of plant remains was negatively related to temperature of the wettest quarter. Nutrients enhanced decomposition most at cool, high rainfall sites, indicating that in a warmer and drier future fertilized grassland soils will have an even more limited potential for microbial processing of plant remains.
Persistent UFZ Identifier
Ochoa‐Hueso, R., Borer, E.T., Seabloom, E.W., Hobbie, S.E., Risch, A.C., Collins, S.L., Alberti, J., Bahamonde, H.A., Brown, C.S., Caldeira, M.C., Daleo, P., Dickman, C.R., Ebeling, A., Eisenhauer, N., Esch, E.H., Eskelinen, A., Fernández, V., Güsewell, S., Gutierrez‐Larruga, B., Hofmockel, K., Laungani, R., Lind, E., López, A., McCulley, R.L., Moore, J.L., Peri, P.L., Power, S.A., Price, J.N., Prober, S.M., Roscher, C., Sarneel, J.M., Schütz, M., Siebert, J., Standish, R.J., Ayuso, S.V., Virtanen, R., Wardle, G.M., Wiehl, G., Yahdjian, L., Zamin, T. (2020):
Microbial processing of plant remains is co‐limited by multiple nutrients in global grasslands
Glob. Change Biol. 26 (8), 4572 - 4582 10.1111/gcb.15146