Publication Details

Category Text Publication
Reference Category Journals
DOI 10.1111/gcb.16684
Licence creative commons licence
Title (Primary) Mechanisms underpinning community stability along a latitudinal gradient: Insights from a niche-based approach
Author Evans, L.C.; Melero, Y.; Schmucki, R.; Boersch-Supan, P.H.; Brotons, L.; Fontaine, C.; Jiguet, F.; Kuussaari, M.; Massimino, D.; Robinson, R.A.; Roy, D.B.; Schweiger, O.; Settele, J.; Stefanescu, C.; van Turnhout, C.A.M.; Oliver, T.H.
Source Titel Global Change Biology
Year 2023
Department BZF; NSF; iDiv
Volume 29
Issue 12
Page From 3271
Page To 3284
Language englisch
Topic T5 Future Landscapes
Data and Software links https://doi.org/10.5281/zenodo.6578515
Supplements https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fgcb.16684&file=gcb16684-sup-0001-Appendix.docx
Keywords Bayesian analysis; biodiversity; butterflies; community stability; diversity–stability; niche; population stability; variance partitioning
Abstract At large scales, the mechanisms underpinning stability in natural communities may vary in importance due to changes in species composition, mean abundance, and species richness. Here we link species characteristics (niche positions) and community characteristics (richness and abundance) to evaluate the importance of stability mechanisms in 156 butterfly communities monitored across three European countries and spanning five bioclimatic regions. We construct niche-based hierarchical structural Bayesian models to explain first differences in abundance, population stability, and species richness between the countries, and then explore how these factors impact community stability both directly and indirectly (via synchrony and population stability). Species richness was partially explained by the position of a site relative to the niches of the species pool, and species near the centre of their niche had higher average population stability. The differences in mean abundance, population stability, and species richness then influenced how much variation in community stability they explained across the countries. We found, using variance partitioning, that community stability in Finnish communities was most influenced by community abundance, whereas this aspect was unimportant in Spain with species synchrony explaining most variation; the UK was somewhat intermediate with both factors explaining variation. Across all countries, the diversity–stability relationship was indirect with species richness reducing synchrony which increased community stability, with no direct effects of species richness. Our results suggest that in natural communities, biogeographical variation observed in key drivers of stability, such as population abundance and species richness, leads to community stability being limited by different factors and that this can partially be explained due to the niche characteristics of the European butterfly assemblage.
Persistent UFZ Identifier https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=23207
Evans, L.C., Melero, Y., Schmucki, R., Boersch-Supan, P.H., Brotons, L., Fontaine, C., Jiguet, F., Kuussaari, M., Massimino, D., Robinson, R.A., Roy, D.B., Schweiger, O., Settele, J., Stefanescu, C., van Turnhout, C.A.M., Oliver, T.H. (2023):
Mechanisms underpinning community stability along a latitudinal gradient: Insights from a niche-based approach
Glob. Change Biol. 29 (12), 3271 - 3284 10.1111/gcb.16684