Publication Details

Category Text Publication
Reference Category Journals
DOI 10.1111/gcb.16697
Licence creative commons licence
Title (Primary) Carbon–biodiversity relationships in a highly diverse subtropical forest
Author Schuldt, A.; Liu, X.; Buscot, F.; Bruelheide, H.; Erfmeier, A.; He, J.-S.; Klein, A.-M.; Ma, K.; Scherer-Lorenzen, M.; Schmid, B.; Scholten, T.; Tang, Z.; Trogisch, S.; Wirth, C.; Wubet, T. ORCID logo ; Staab, M.
Source Titel Global Change Biology
Year 2023
Department BZF; BOOEK; iDiv
Volume 29
Issue 18
Page From 5321
Page To 5333
Language englisch
Topic T5 Future Landscapes
Data and Software links https://doi.org/10.5061/dryad.83bk3j9wg
Supplements https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fgcb.16697&file=gcb16697-sup-0001-Supinfo.docx
Keywords BEF-China; carbon sequestration; climate mitigation; forest restoration; species richness; trophic levels
Abstract Carbon-focused climate mitigation strategies are becoming increasingly important in forests. However, with ongoing biodiversity declines we require better knowledge of how much such strategies account for biodiversity. We particularly lack information across multiple trophic levels and on established forests, where the interplay between carbon stocks, stand age, and tree diversity might influence carbon–biodiversity relationships. Using a large dataset (>4600 heterotrophic species of 23 taxonomic groups) from secondary, subtropical forests, we tested how multitrophic diversity and diversity within trophic groups relate to aboveground, belowground, and total carbon stocks at different levels of tree species richness and stand age. Our study revealed that aboveground carbon, the key component of climate-based management, was largely unrelated to multitrophic diversity. By contrast, total carbon stocks—that is, including belowground carbon—emerged as a significant predictor of multitrophic diversity. Relationships were nonlinear and strongest for lower trophic levels, but nonsignificant for higher trophic level diversity. Tree species richness and stand age moderated these relationships, suggesting long-term regeneration of forests may be particularly effective in reconciling carbon and biodiversity targets. Our findings highlight that biodiversity benefits of climate-oriented management need to be evaluated carefully, and only maximizing aboveground carbon may fail to account for biodiversity conservation requirements.
Persistent UFZ Identifier https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=23124
Schuldt, A., Liu, X., Buscot, F., Bruelheide, H., Erfmeier, A., He, J.-S., Klein, A.-M., Ma, K., Scherer-Lorenzen, M., Schmid, B., Scholten, T., Tang, Z., Trogisch, S., Wirth, C., Wubet, T., Staab, M. (2023):
Carbon–biodiversity relationships in a highly diverse subtropical forest
Glob. Change Biol. 29 (18), 5321 - 5333 10.1111/gcb.16697