Publication Details |
Category | Text Publication |
Reference Category | Book chapters |
DOI | 10.1016/bs.aecr.2019.06.003 |
Title (Primary) | Terrestrial laser scanning reveals temporal changes in biodiversity mechanisms driving grassland productivity |
Title (Secondary) | Mechanisms underlying the relationship between biodiversity and ecosystem function |
Author | Guimarães-Steinicke, C.; Weigelt, A.; Ebeling, A.; Eisenhauer, N.; Duque-Lazo, J.; Reu, B.; Roscher, C.; Schumacher, J.; Wagg, C.; Wirth, C. |
Publisher | Eisenhauer, N.; Bohan, D.A.; Dumbrell, A.J. |
Source Titel | Advances in Ecological Research |
Year | 2019 |
Department | iDiv; PHYDIV |
Volume | 61 |
Page From | 133 |
Page To | 161 |
Language | englisch |
Keywords | Community structure; Resource partitioning; Community dynamics; Functional traits; Growing season; Identity effects; Stature traits; 3D Point cloud |
UFZ inventory | Magdeburg, Bibliothek, 00533119, 19-0459 MA |
Abstract | Biodiversity often enhances ecosystem functioning likely due to multiple, often temporarily separated drivers. Yet, most studies are based on one or two snapshot measurements per year. We estimated productivity using bi-weekly estimates of high-resolution canopy height in 2 years with terrestrial laser scanning (TLS) in a grassland diversity experiment. We measured how different facets of plant diversity (functional dispersion [FDis], functional identity [PCA species scores], and species richness [SR]) predict aboveground biomass over time. We found strong intra- and inter-annual variability in the relative importance of different mechanisms underlying the diversity effects on mean canopy height, i.e., resource partitioning (via FDis) and identity effects (via species scores), respectively. TLS is a promising tool to quantify community development non-destructively and to unravel the temporal dynamics of biodiversity-ecosystem functioning mechanisms. Our results show that harvesting at estimated peak biomass—as done in most grassland experiments—may miss important variation in underlying mechanisms driving cumulative biomass production. |
Persistent UFZ Identifier | https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=22223 |
Guimarães-Steinicke, C., Weigelt, A., Ebeling, A., Eisenhauer, N., Duque-Lazo, J., Reu, B., Roscher, C., Schumacher, J., Wagg, C., Wirth, C. (2019): Terrestrial laser scanning reveals temporal changes in biodiversity mechanisms driving grassland productivity In: Eisenhauer, N., Bohan, D.A., Dumbrell, A.J. (eds.) Mechanisms underlying the relationship between biodiversity and ecosystem function Advances in Ecological Research 61 Academic Press / Elsevier, London, p. 133 - 161 10.1016/bs.aecr.2019.06.003 |