Publication Details

Category Text Publication
Reference Category Journals
DOI 10.3390/rs11091111
Licence creative commons licence
Title (Primary) 3D-modelling of Charlemagne’s summit canal (Southern Germany)—Merging remote sensing and geoarchaeological subsurface data
Author Schmidt, J.; Rabiger-Völlmer, J.; Werther, L.; Werban, U. ORCID logo ; Dietrich, P. ORCID logo ; Berg, S.; Ettel, P.; Linzen, S.; Stele, A.; Schneider, B.; Zielhofer, C.
Journal Remote Sensing
Year 2019
Department MET
Volume 11
Issue 9
Page From art. 1111
Language englisch
Keywords 3D-modelling; airborne LiDAR data; cultural heritage; digital terrain model; GIS; Fossa Carolina; early middle ages; direct push sensing; SQUID magnetic prospection
UFZ wide themes MOSAIC;
Abstract The Early Medieval Fossa Carolina is the first hydro-engineering construction that bridges the Central EuropeanWatershed. The canal was built in 792/793 AD on order of Charlemagne and should connect the drainage systems of the Rhine-Main catchment and the Danube catchment. In this study, we show for the first time, the integration of Airborne LiDAR (Light Detection and Ranging) and geoarchaeological subsurface datasets with the aim to create a 3D-model of Charlemagne’s summit canal. We used a purged Digital Terrain Model that reflects the pre-modern topography. The geometries of buried canal cross-sections are derived from three archaeological excavations and four high-resolution direct push sensing transects. By means of extensive core data, we interpolate the trench bottom and adjacent edges along the entire canal course. As a result, we are able to create a 3D-model that reflects the maximum construction depth of the Carolingian canal and calculate an excavation volume of approx. 297,000 m3. Additionally, we compute the volume of the present dam remnants by Airborne LiDAR data. Surprisingly, the volume of the dam remnants reveals only
120,000 m3 and is much smaller than the computed Carolingian excavation volume. The difference reflects the erosion and anthropogenic overprint since the 8th century AD.
Persistent UFZ Identifier
Schmidt, J., Rabiger-Völlmer, J., Werther, L., Werban, U., Dietrich, P., Berg, S., Ettel, P., Linzen, S., Stele, A., Schneider, B., Zielhofer, C. (2019):
3D-modelling of Charlemagne’s summit canal (Southern Germany)—Merging remote sensing and geoarchaeological subsurface data
Remote Sens. 11 (9), art. 1111