Publication Details |
| Category | Text Publication |
| Reference Category | Journals |
| DOI | 10.1073/pnas.1819636116 |
| Title (Primary) | One-megadalton metalloenzyme complex in Geobacter metallireducens involved in benzene ring reduction beyond the biological redox window |
| Author | Huwiler, S.G.; Löffler, C.; Anselmann, S.E.L.; Stärk, H.-J.; von Bergen, M.; Flechsler, J.; Rachel, R.; Boll, M. |
| Source Titel | Proceedings of the National Academy of Sciences of the United States of America |
| Year | 2019 |
| Department | ANA; MOLSYB |
| Volume | 116 |
| Issue | 6 |
| Page From | 2259 |
| Page To | 2264 |
| Language | englisch |
| Supplements | https://www.pnas.org/highwire/filestream/846054/field_highwire_adjunct_files/0/pnas.1819636116.sapp.pdf |
| Abstract | Reversible biological electron transfer usually occurs between redox couples at standard redox potentials ranging from +0.8 to −0.5 V. Dearomatizing benzoyl-CoA reductases (BCRs), key enzymes of the globally relevant microbial degradation of aromatic compounds at anoxic sites, catalyze a biological Birch reduction beyond the negative limit of this redox window. The structurally characterized BamBC subunits of class II BCRs accomplish benzene ring reduction at an active-site tungsten cofactor; however, the mechanism and components involved in the energetic coupling of endergonic benzene ring reduction have remained hypothetical. We present a 1-MDa, membrane-associated, Bam[(BC)2DEFGHI]2 complex from the anaerobic bacterium Geobacter metallireducens harboring 4 tungsten, 4 zinc, 2 selenocysteines, 6 FAD, and >50 FeS cofactors. The results suggest that class II BCRs catalyze electron transfer to the aromatic ring, yielding a cyclic 1,5-dienoyl-CoA via two flavin-based electron bifurcation events. This work expands our knowledge of energetic couplings in biology by high-molecular-mass electron bifurcating machineries. |
| Persistent UFZ Identifier | https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=21544 |
| Huwiler, S.G., Löffler, C., Anselmann, S.E.L., Stärk, H.-J., von Bergen, M., Flechsler, J., Rachel, R., Boll, M. (2019): One-megadalton metalloenzyme complex in Geobacter metallireducens involved in benzene ring reduction beyond the biological redox window Proc. Natl. Acad. Sci. U.S.A. 116 (6), 2259 - 2264 10.1073/pnas.1819636116 |
|