Publication Details

Category Text Publication
Reference Category Journals
DOI 10.1016/j.advwatres.2018.03.006
Document author version
Title (Primary) Revisitation of the dipole tracer test for heterogeneous porous formations
Author Zech, A.; D'Angelo, C.; Attinger, S.; Fiori, A.
Journal Advances in Water Resources
Year 2018
Department CHS
Volume 115
Page From 198
Page To 206
Language englisch

In this paper, a new analytical solution for interpreting dipole tests in heterogeneous media is derived by associating the shape of the tracer breakthrough curve with the log-conductivity variance. It is presented how the solution can be used for interpretation of dipole field test in view of geostatistical aquifer characterization on three illustrative examples.

The analytical solution for the tracer breakthrough curve at the pumping well in a dipole tracer test is developed by considering a perfectly stratified formation. The analysis is carried out making use of the travel time of a generic solute particle, from the injection to the pumping well. Injection conditions are adapted to different possible field setting. Solutions are presented for resident and flux proportional injection mode as well as for an instantaneous pulse of solute and continuous solute injections.

The analytical form of the solution allows a detailed investigation on the impact of heterogeneity, the tracer input conditions and ergodicity conditions at the well. The impact of heterogeneity manifests in a significant spreading of solute particles that increases the natural tendency to spreading induced by the dipole setup. Furthermore, with increasing heterogeneity the number of layers needed to reach ergodic conditions become larger. Thus, dipole test in highly heterogeneous aquifers might take place under non-ergodic conditions giving that the log-conductivity variance is underestimated. The method is a promising geostatistical analyzing tool being the first analytical solution for dipole tracer test analysis taking heterogeneity of hydraulic conductivity into account.

Persistent UFZ Identifier
Zech, A., D'Angelo, C., Attinger, S., Fiori, A. (2018):
Revisitation of the dipole tracer test for heterogeneous porous formations
Adv. Water Resour. 115 , 198 - 206