Publication Details

Category Text Publication
Reference Category Journals
DOI 10.3390/w10030259
Licence creative commons licence
Title (Primary) Modelling tools to analyze and assess the ecological impact of hydropower dams
Author Nguyen, T.H.T.; Everaert, G.; Boets, P.; Forio, M.A.E.; Bennetsen, E.; Volk, M.; Hoang, T.H.T.; Goethals, P.L.M.
Journal Water
Year 2018
Department CLE
Volume 10
Issue 3
Page From art. 259
Language englisch
Keywords food web models; habitat suitability models; integrated models; water quality models; hydrodynamic models; hydropower dams
UFZ wide themes RU1;
Abstract We critically analyzed a set of ecological models that are used to assess the impact of hydropower dams on water quality and habitat suitability for biological communities. After a literature search, we developed an integrated conceptual model that illustrates the linkages between the main input variables, model approaches, the output variables and biotic-abiotic interactions in the ecosystems related to hydropower dams. We found that variations in water flow and water depth coupled with increased nutrient availability are major variables that contribute to structural and functional ecosystem changes. We also found that ecological models are an important tool to assess the impact of hydropower dams. For instance, model simulation of different scenarios (e.g., with and without the dam, different operation methods) can analyze and predict the related ecosystem shifts. However, one of the remaining shortcomings of these models is the limited capacity to separate dam-related impacts from other anthropogenic influences (e.g., agriculture, urbanization). Moreover, collecting sufficient high-quality data to increase the statistical power remains a challenge. The severely altered conditions (e.g., generation of very deep lakes) also lead to difficulties for standardized data collection. We see future opportunities in the integration of models to improve the understanding of the different processes affected by hydropower dam development and operation, as well as the use of remote sensing methods for data collection.
Persistent UFZ Identifier
Nguyen, T.H.T., Everaert, G., Boets, P., Forio, M.A.E., Bennetsen, E., Volk, M., Hoang, T.H.T., Goethals, P.L.M. (2018):
Modelling tools to analyze and assess the ecological impact of hydropower dams
Water 10 (3), art. 259