Publication Details

Category Text Publication
Reference Category Journals
DOI 10.1002/2017WR020709
Title (Primary) Hyporheic passive flux meters reveal inverse vertical zonation and high seasonality of nitrogen processing in an anthropogenically modified stream (Holtemme, Germany)
Author Kunz, J.V.; Annable, M.D.; Rao, S.; Rode, M.; Borchardt, D.
Source Titel Water Resources Research
Year 2017
Department ASAM
Volume 53
Issue 12
Page From 10155
Page To 10172
Language englisch
Supplements https://agupubs.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2F2017WR020709&attachmentId=215907757
https://agupubs.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2F2017WR020709&attachmentId=215907758
Keywords hyporheic nutrient flux; source-sink function; time integrative measurements; residence time; oxygen dynamics; anthropogenic modifications; hyporheic nutrient flux; source-sink function; time-integrative measurements; residence time; oxygen dynamics; anthropogenic modifications
UFZ wide themes RU2;
Abstract

Transformation and retention of nitrogen and other biologically reactive solutes in the hyporheic zones of running water contribute to an essential ecosystem service. However, the synoptic impact of intense agricultural or urban land-uses, elevated nutrient loading, flow alterations, riparian clear-cutting and channelization on the source-sink behavior of solutes in hyporheic zones remains largely uncharacterized and unquantified. Therefore, we studied nutrient dynamics in a hydro-morphologically and chemically modified stream reach using a new monitoring approach allowing the simultaneous measurement of nutrient and water flux through a screened area in the subsurface of rivers (Hyporheic Passive Flux Meter, HPFM). With HPFMs we directly assessed time-integrated lateral hyporheic nitrate fluxes during early spring and mid-summer covering different temperature and discharge regimes.

Contrary to our expectations, higher stream discharge coincided with substantially lower hyporheic exchange rates. While in streams featuring a natural morphology, bed-form induced exchange commonly increases with surface flow, the influence of groundwater level was dominant in this reach. Furthermore, in contrast to less impacted environments, where progressive substrate depletion with depths reduces metabolic rates in the subsurface, we identified not the upper, but the intermediate layer of the hyporheic zone as hotspot of nutrient turnover. Overall, the hyporheic zone at the study site functioned partly as nitrate source, partly as a sink. Neither of the commonly used determinants redox state and residence time could explain this source or sink function. Our results give clear evidence to carefully transfer the knowledge of hyporheic zone processes from “natural” systems to anthropologically modified streams.

Persistent UFZ Identifier https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=19616
Kunz, J.V., Annable, M.D., Rao, S., Rode, M., Borchardt, D. (2017):
Hyporheic passive flux meters reveal inverse vertical zonation and high seasonality of nitrogen processing in an anthropogenically modified stream (Holtemme, Germany)
Water Resour. Res. 53 (12), 10155 - 10172 10.1002/2017WR020709