Publication Details

Category Text Publication
Reference Category Journals
DOI 10.1007/s11356-017-9976-3
Document Shareable Link
Title (Primary) Effect of solution pH on aging dynamics and surface structural evolution of mZVI particles: H2 production and spectroscopic/microscopic evidence
Author Tang, F.L.; Xin, J.; Zheng, X.L.; Zheng, T.Y.; Yuan, X.Z.; Kolditz, O. ORCID logo
Source Titel Environmental Science and Pollution Research
Year 2017
Department ENVINF
Volume 24
Issue 30
Page From 23538
Page To 23548
Language englisch
Supplements https://static-content.springer.com/esm/art%3A10.1007%2Fs11356-017-9976-3/MediaObjects/11356_2017_9976_MOESM1_ESM.docx
Keywords Microscale zero-valent iron (mZVI); Anaerobic corrosion; Hydrogen production; Corrosion rate; Aging products
UFZ wide themes RU6
Abstract A microscale zero-valent iron (mZVI)-based in situ reactive zone is a promising technology for contaminated groundwater remediation. Estimation of mZVI aging behavior after its injection into the subsurface is essential for efficiency and longevity assessments. In this study, batch tests were conducted to investigate the effect of initial pH on mZVI aging dynamics, as well as the formation and evolution of aging products over 112 days. Results indicated that mZVI aging accelerated with decreasing initial pH. Corrosion rates of mZVI particles under pH 6.0 and 7.5 were approximately two orders of magnitude higher than those observed at pH 9.0. The morphological, structural, and compositional evolution of mZVI particles in three systems (pH = 6.0, 7.5, and 9.0) were investigated using scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. In acidic and neutral solutions, a thick passivation layer with loosely and unevenly distributed aging precipitates was observed, and Fe3O4 was the final aging precipitate. Nevertheless, in alkaline solutions, minute aging precipitates were detected on the mZVI surface at 112 day. Characterization results suggested that mZVI was oxidized via the Fe0–Fe(OH)2–Fe3O4 route. These findings shed new light on mZVI aging mechanisms, particularly its physicochemical characteristics and the structural evolution of mZVI in field-scale groundwater remediation applications.
Persistent UFZ Identifier https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=19494
Tang, F.L., Xin, J., Zheng, X.L., Zheng, T.Y., Yuan, X.Z., Kolditz, O. (2017):
Effect of solution pH on aging dynamics and surface structural evolution of mZVI particles: H2 production and spectroscopic/microscopic evidence
Environ. Sci. Pollut. Res. 24 (30), 23538 - 23548 10.1007/s11356-017-9976-3