Publication Details |
Category | Text Publication |
Reference Category | Journals |
DOI | 10.5194/hess-21-4323-2017 |
Title (Primary) | Toward seamless hydrologic predictions across spatial scales |
Author | Samaniego, L.; Kumar, R.; Thober, S.; Rakovec, O.
![]() |
Journal | Hydrology and Earth System Sciences |
Year | 2017 |
Department | CHS |
Volume | 21 |
Issue | 9 |
Page From | 4323 |
Page To | 4346 |
Language | englisch |
UFZ wide themes | RU5; |
Abstract | Land surface and hydrologic models (LSM/HM) are used at diverse spatial resolutions ranging from 1–10 km in catchment-scale applications to over 50 km in global-scale applications. Application of the same model structure at different spatial scales requires that the model estimates similar fluxes independent of the model resolution and fulfills a flux-matching condition across scales. An analysis of state-of-the-art LSMs and HMs reveals that most do not have consistent and realistic parameter fields for land surface geophysical properties. Multiple experiments with the mHM, Noah-MP, PCR-GLOBWB and WaterGAP models are conducted to demonstrate the pitfalls of poor parameterization practices currently used in most operational models, which are insufficient to satisfy the flux-matching condition. These examples demonstrate that J. Dooge's 1982 statement on the unsolved problem of parameterization in these models remains true. We provide a short review of existing parameter regionalization techniques and discuss a method for obtaining seamless hydrological predictions of water fluxes and states across multiple spatial resolutions. The multiscale parameter regionalization (MPR) technique is a practical and robust method that provides consistent (seamless) parameter and flux fields across scales. A general model protocol is presented to describe how MPR can be applied to a specific model, with an example of this application using the PCR-GLOBWB model. Applying MPR to PCR-GLOBWB substantially improves the flux-matching condition. Estimation of evapotranspiration without MPR at 5 arcmin and 30 arcmin spatial resolutions for the Rhine river basin results in a difference of approximately 29 %. Applying MPR reduce this difference to 9 %. For total soil water, the differences without and with MPR are 25 % and 7 %, respectively. |
Persistent UFZ Identifier | https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=18503 |
Samaniego, L., Kumar, R., Thober, S., Rakovec, O., Zink, M., Wanders, N., Eisner, S., Müller Schmied, H., Sutanudjaja, E.H., Warrach-Sagi, K., Attinger, S. (2017): Toward seamless hydrologic predictions across spatial scales Hydrol. Earth Syst. Sci. 21 (9), 4323 - 4346 |