Publication Details

Category Text Publication
Reference Category Journals
DOI 10.1890/15-0346
Document Shareable Link
Title (Primary) Evolutionary patterns and physicochemical properties explain macroinvertebrate sensitivity to heavy metals
Author Malaj, E.; Guénard, G.; Schäfer, R.B.; von der Ohe, P.C.
Source Titel Ecological Applications
Year 2016
Department WANA
Volume 26
Issue 4
Page From 1249
Page To 1259
Language englisch
Supplements https://esajournals.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1890%2F15-0346&file=eap1279-sup-0001-AppendixS1.pdf
https://esajournals.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1890%2F15-0346&file=eap1279-sup-0002-AppendixS2.pdf
https://esajournals.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1890%2F15-0346&file=eap1279-sup-0003-AppendixS3.pdf
https://esajournals.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1890%2F15-0346&file=eap1279-sup-0004-AppendixS4.pdf
https://esajournals.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1890%2F15-0346&file=eap1279-sup-0005-MetadataS1.docx
https://esajournals.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1890%2F15-0346&file=eap1279-sup-0006-DataS1.zip
Keywords acute toxicity; aquatic invertebrates; ecotoxicology; evolutionary biology; LC50; molecular data; phylogenetic modeling; phylogenetic tree
UFZ wide themes RU2;
Abstract Ecological risk assessment depends strongly on species sensitivity data. Typically, sensitivity data are based on laboratory toxicity bioassays, which for practical constraints cannot be exhaustively performed for all species and chemicals available. Bilinear models integrating phylogenetic information of species and physicochemical properties of compounds allow to predict species sensitivity to chemicals. Combining the molecular information (DNA sequences) of 31 invertebrate species with the physicochemical properties of six bivalent metals, we built bilinear models that explained 70–80% of the variability in species sensitivity to heavy metals. Phylogeny was the most important component of the bilinear models, as it explained the major part of the explained variance (>40%). Predicted values from bilinear modeling were in agreement with experimental values (>50%); therefore, this approach is a good starting point to build statistical models which can potentially predict heavy metal toxicity for untested invertebrate species based on empirical values for similar species. Despite their good performance, development of the presented bilinear models would benefit from improved phylogenetic and toxicological datasets. Our analysis is an example for linking evolutionary biology with applied ecotoxicology. Its future applications may encompass other stress factors or traits influencing the survival of aquatic organisms in polluted environments.
Persistent UFZ Identifier https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=17650
Malaj, E., Guénard, G., Schäfer, R.B., von der Ohe, P.C. (2016):
Evolutionary patterns and physicochemical properties explain macroinvertebrate sensitivity to heavy metals
Ecol. Appl. 26 (4), 1249 - 1259 10.1890/15-0346