Publication Details

Reference Category Journals
DOI / URL link
Title (Primary) Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation
Author Velimirovic, M.; Schmid, D.; Wagner, S.; Micić, V.; von der Kammer, F.; Hofmann, T.;
Journal Science of the Total Environment
Year 2016
Department ANA;
Volume 563–564
Language englisch;
POF III (all) T31;
Keywords Milled zerovalent iron; Agar agar; Particle stability; Particle transport; Particle reactivity
UFZ wide themes RU2;
Abstract Submicron-scale milled zerovalent iron (milled ZVI) particles produced by grinding macroscopic raw materials could provide a cost-effective alternative to nanoscale zerovalent iron (nZVI) particles for in situ degradation of chlorinated aliphatic hydrocarbons in groundwater. However, the aggregation and settling of bare milled ZVI particles from suspension presents a significant obstacle to their in situ application for groundwater remediation. In our investigations we reduced the rapid aggregation and settling rate of bare milled ZVI particles from suspension by stabilization with a “green” agar agar polymer. The transport potential of stabilized milled ZVI particle suspensions in a diverse array of natural heterogeneous porous media was evaluated in a series of well-controlled laboratory column experiments. The impact of agar agar on trichloroethene (TCE) removal by milled ZVI particles was assessed in laboratory-scale batch reactors. The use of agar agar significantly enhanced the transport of milled ZVI particles in all of the investigated porous media. Reactivity tests showed that the agar agar-stabilized milled ZVI particles were reactive towards TCE, but that their reactivity was an order of magnitude less than that of bare, non-stabilized milled ZVI particles. Our results suggest that milled ZVI particles could be used as an alternative to nZVI particles as their potential for emplacement into contaminated zone, their reactivity, and expected longevity are beneficial for in situ groundwater remediation.
ID 17635
Persistent UFZ Identifier http://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=17635
Velimirovic, M., Schmid, D., Wagner, S., Micić, V., von der Kammer, F., Hofmann, T. (2016):
Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation
Sci. Total Environ. 563–564 , 713 - 723