Publication Details

Reference Category Journals
DOI / URL link
Title (Primary) Carbonate isotopes from high altitude Tso Moriri Lake (NW Himalayas) provide clues to late glacial and Holocene moisture source and atmospheric circulation changes
Author Mishra, P.K.; Prasad, S.; Anoop, A.; Plessen, B.; Jehangir, A.; Gaye, B.; Menzel, P.; Weise, S.M.; Yousuf, A.R.;
Journal Palaeogeography, Palaeoclimatology, Palaeoecology
Year 2015
Department CATHYD;
Volume 425
Language englisch;
POF III (all) T31;
Keywords Carbonates; Holocene; Indian summer monsoon; Isotopes; Tso Moriri Lake
UFZ wide themes RU2;
Abstract High resolution isotopic (δ18O and δ13C) investigations on endogenic carbonates (calcite/aragonite) from Tso Moriri Lake, NW Himalaya show dramatic fluctuations during the late glacial and the early Holocene, and a persistent enrichment trend during the late Holocene. Changes in this lake are largely governed by the [input (meltwater + monsoon precipitation)/evaporation] (I/E) ratio, also reflected in changes in the carbonate mineralogy with aragonite being formed during periods of lowest I/E. Using new isotopic data on endogenic carbonates in combination with the available data on geochemistry, mineralogy, and reconstructed mean annual precipitation, we demonstrate that the late glacial and early Holocene carbonate δ18O variability resulted from fluctuating Indian summer monsoon (ISM) precipitation in NW Himalaya. This region experienced increasing ISM precipitation between ca. 13.1 and 11.7 cal ka and highest ISM precipitation during the early Holocene (11.2–8.5 cal ka). However, during the late Holocene, evaporation was the dominant control on the carbonate δ18O. Regional comparison of reconstructed hydrological changes from Tso Moriri Lake with other archives from the Asian summer monsoon and westerlies domain shows that the intensified westerly influence that resulted in higher lake levels (after 8 cal ka) in central Asia was not strongly felt in NW Himalaya.
ID 16107
Persistent UFZ Identifier http://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=16107
Mishra, P.K., Prasad, S., Anoop, A., Plessen, B., Jehangir, A., Gaye, B., Menzel, P., Weise, S.M., Yousuf, A.R. (2015):
Carbonate isotopes from high altitude Tso Moriri Lake (NW Himalayas) provide clues to late glacial and Holocene moisture source and atmospheric circulation changes
Paleogeogr. Paleoclimatol. Paleoecol. 425 , 76 - 83