Publication Details

Reference Category Journals
DOI / URL link
Title (Primary) Simultaneous loss of soil biodiversity and functions along a copper contamination gradient: When soil goes to sleep
Author Naveed, M.; Moldrup, P.; Arthur, E.; Holmstrup, M.; Nicolaisen, M.; Tuller, M.; Herath, L.; Hamamoto, S.; Kawamoto, K.; Komatsu, T.; Vogel, H.-J.; de Jonge, L.W.;
Journal Soil Science Society of America Journal
Year 2014
Department BOPHY;
Volume 78
Issue 4
Language englisch;
POF III (all) T31;
UFZ wide themes RU1
Abstract The impact of biodiversity loss on soil functions is well established via laboratory experiments that generally consider soil biota groups in isolation from each other, a condition rarely present in field soils. As a result, our knowledge about anthropogenic-induced changes in biodiversity and associated soil functions is limited. We quantified an array of soil biological constituents (plants, earthworms, nematodes, bacteria, and fungi) to explore their interactions and to characterize their influence on various soil functions (habitat for soil organisms, air and water regulation, and recycling of nutrients and organic waste) along a legacy Cu pollution gradient. Increasing Cu concentrations had a detrimental impact on both plant growth and species richness. Belowground soil biota showed similar responses, with their sensitivity to elevated Cu concentrations decreasing in the order: earthworms > bacteria > nematodes > fungi. The observed loss of soil biota adversely affected natural soil bioturbation, aggregate formation and stabilization, and decomposition and mineralization processes and therefore resulted in compacted soil with narrow pore size distributions and overall smaller pores, restricted air and water storage and flow, and impeded C, N, and P cycling. The simultaneous evolution of soil biodiversity and functions along the Cu gradient emphasized the key role of soil life in controlling ecosystem services. Furthermore, results indicated that different soil biodiversity and functional indicators started to decline (10% loss) within a Cu concentration range of 110 to 800 mg total Cu kg−1.
ID 15457
Persistent UFZ Identifier http://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=15457
Naveed, M., Moldrup, P., Arthur, E., Holmstrup, M., Nicolaisen, M., Tuller, M., Herath, L., Hamamoto, S., Kawamoto, K., Komatsu, T., Vogel, H.-J., de Jonge, L.W. (2014):
Simultaneous loss of soil biodiversity and functions along a copper contamination gradient: When soil goes to sleep
Soil Sci. Soc. Am. J. 78 (4), 1239 - 1250