Publication Details

Category Text Publication
Reference Category Journals
DOI 10.1016/j.syapm.2014.02.002
Title (Primary) The effect of FISH and CARD-FISH on the isotopic composition of 13C- and 15N-labeled Pseudomonas putida cells measured by nanoSIMS
Author Musat, N.; Stryhanyuk, H.; Bombach, P.; Adrian, L.; Audinot, J.-N.; Richnow, H.H.
Source Titel Systematic and Applied Microbiology
Year 2014
Department ISOBIO
Volume 37
Issue 4
Page From 267
Page To 276
Language englisch
Keywords NanoSIMS; FISH; CARD-FISH; Sample preparation; Single cell; Stable isotopes
UFZ wide themes RU4; ProVIS;
Abstract The use of nanoSIMS for the exploration of microbial activities in natural habitats often implies that stable isotope tracer experiments are combined with in situ hybridization techniques (i.e. fluorescence in situ hybridization (FISH) or catalyzed reporter deposition (CARD)-FISH). In this study, Pseudomonas putida grown on 13C- and 15N-labeled carbon and nitrogen, collected in exponential growth and stationary phases, was hybridized and analyzed by nanoSIMS. It was shown that 13C and 15N fractions decreased after FISH and CARD-FISH in comparison to chemically untreated cells. However, the fractions were influenced differently by various treatments. After paraformaldehyde fixation of exponentially growing cells, a reduction of the 13C and 15N fractions was measured from 94 ± 1.2% and 89.5 ± 3.8% to 90.2 ± 0.8% and 64 ± 4.6%, respectively, indicating that nitrogen isotopic composition was most influenced. A further decrease of the 13C and 15N fractions to 80.7 ± 6.5 and 59.5 ± 4.1%, respectively, was measured after FISH, while CARD-FISH decreased the fractions to 57.4 ± 3.0% and 47.1 ± 4.1%, respectively. The analysis of cells collected in different growth phases revealed that the effect of various treatments seemed to be dependent on the cell's physiological state. In addition, a mathematical model that can be used in further studies was developed in order to calculate the amount of carbon introduced into the cells by chemical treatments. These results can be valuable for environmental FISH-nanoSIMS studies where the isotopic composition of single cells will be used to quantitatively assess the importance of specific populations to certain biochemical processes and determine budget estimations.
Persistent UFZ Identifier
Musat, N., Stryhanyuk, H., Bombach, P., Adrian, L., Audinot, J.-N., Richnow, H.H. (2014):
The effect of FISH and CARD-FISH on the isotopic composition of 13C- and 15N-labeled Pseudomonas putida cells measured by nanoSIMS
Syst. Appl. Microbiol. 37 (4), 267 - 276 10.1016/j.syapm.2014.02.002