Publication Details |
Category | Text Publication |
Reference Category | Journals |
DOI | 10.1016/j.jconhyd.2013.10.007 |
Title (Primary) | Description and verification of a novel flow and transport model for silicate-gel emplacement |
Author | Walther, M.; Solpuker, U.; Böttcher, N.; Kolditz, O. ; Liedl, R.; Schwartz, F.W. |
Source Titel | Journal of Contaminant Hydrology |
Year | 2014 |
Department | ENVINF |
Volume | 157 |
Page From | 1 |
Page To | 10 |
Language | englisch |
Keywords | Gelation; Viscosity change; Density-dependent; Numerical modeling; Laboratory experiment; OpenGeoSys |
UFZ wide themes | RU5; |
Abstract | We present a novel approach for the numerical simulation of the gelation of silicate solutions under density-dependent flow conditions. The method utilizes an auxiliary, not density-dependent solute that is subject to a linear decay function to provide temporal information that is used to describe the viscosity change of the fluid. By comparing the modeling results to experimental data, we are able to simulate the behavior and the gelation process of the injected solute for three different compositions, including long-term stability of the gelated area, and non-gelation of low concentrations due to hydro-dynamic dispersion. This approach can also be used for other types of solutes with this gelling property and is useful in a variety of applications in geological, civil and environmental engineering. |
Persistent UFZ Identifier | https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=14697 |
Walther, M., Solpuker, U., Böttcher, N., Kolditz, O., Liedl, R., Schwartz, F.W. (2014): Description and verification of a novel flow and transport model for silicate-gel emplacement J. Contam. Hydrol. 157 , 1 - 10 10.1016/j.jconhyd.2013.10.007 |