Publication Details

Category Text Publication
Reference Category Book chapters
DOI 10.1007/978-3-319-04205-3_6
Title (Primary) MuSaWa: Multi-Scale S-wave tomography for exploration and risk assessment of development sites
Title (Secondary) Tomography of the Earth’s Crust: From Geophysical Sounding to Real-Time Monitoring. GEOTECHNOLOGIEN Science Report No. 21
Author Paasche, H.; Rumpf, M.; Lontsi, A.M.; Hausmann, J.; Hannemann, K.; Fechner, T.; Ohrnberger, M.; Werban, U. ORCID logo ; Tronicke, J.; Krüger, F.; Dietrich, P. ORCID logo
Publisher Weber, M.; Münch, U.
Source Titel Advanced Technologies in Earth Sciences
Year 2014
Department MET
Page From 95
Page To 114
Language englisch
UFZ wide themes RU5;
UFZ inventory Leipzig, Bibliothek - Hauptlesesaal, 00490900, 14-0323
Abstract Abstract  Near surface seismic imaging bears a high potential to enhance geotechnical site characterization. We highlight recent advances made in S-wave tomography for characterizing near surface unconsolidated sediments. This comprises progress in experimental setup and acquisition technology for local scale S-wave tomogra- phy. We discuss the development of mobile seismic crosshole tomography solely building on temporary installations realized by direct push technology as well as a modular borehole geophone chain suitable for operation in shallow and slim near surface boreholes. These technical developments are accompanied by progress in geophysical model generation, i.e., fully non-linear inversion strategies suitable for routine application and model uncertainty appraisal. We link S-wave and P-wave tomographic models to
geotechnical target parameters and evaluate recent develop- ments made for high resolution ground-truthing using direct push technology for geotechnical and stratigraphic analyses. To be able to provide improved regional scale seismic properties we advanced the Rayleigh wave based imaging of S-wave velocity variations using diffusive wavefield theory for modeling the full microtremor H/V spectral ratio for receivers at the surface and in depth.
Persistent UFZ Identifier https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=14595
Paasche, H., Rumpf, M., Lontsi, A.M., Hausmann, J., Hannemann, K., Fechner, T., Ohrnberger, M., Werban, U., Tronicke, J., Krüger, F., Dietrich, P. (2014):
MuSaWa: Multi-Scale S-wave tomography for exploration and risk assessment of development sites
In: Weber, M., Münch, U. (eds.)
Tomography of the Earth’s Crust: From Geophysical Sounding to Real-Time Monitoring. GEOTECHNOLOGIEN Science Report No. 21
Advanced Technologies in Earth Sciences
Springer, Berlin, Heidelberg, p. 95 - 114 10.1007/978-3-319-04205-3_6