Publication Details

Category Text Publication
Reference Category Journals
DOI 10.1002/jpln.201300077
Title (Primary) Live and death of streptomyces in soil—what happens to the biomass?
Author Schütze, E.; Miltner, A. ORCID logo ; Nietzsche, S.; Achtenhagen, J.; Klose, M.; Merten, D.; Greyer, M.; Roth, M.; Kästner, M.; Kothe, E.
Source Titel Journal of Plant Nutrition and Soil Science
Year 2013
Department UBT
Volume 176
Issue 5
Page From 665
Page To 673
Language englisch
Keywords streptomycetes;microbial residues;soil organic matter (SOM);nickel superoxide dismutase;heavy metals;necromass
UFZ wide themes RU3;

The formation of soil organic matter (SOM) has been proposed to depend on fragmentation of biomass after cell death. However, this is hard to mimic in laboratory experiments showing the process directly. We used heavy metal contamination in order to provide an environment in which one Streptomyces strain, the heavy metal resistant S. mirabilis P16B-1, could survive while the sensitive strain S. lividans TK24 was expected to die and disintegrate; the necromass fragments would then contribute to SOM formation. Both strains were grown for 30 d in sterile mesocosms containing either highly metal-contaminated soil from a former uranium-mining site in Ronneburg, Germany, or control soil from a municipal park, Jena, Germany. The fate and morphology of living and dead bacterial biomass (necromass) was observed using scanning electron microscopy. Attachment of soil particles to the intact mycelium as well as decay of dead biomass was observed. Dead bacterial biomass was identified in form of patchy fragments while the superordinate filamentous structure of the hyphae was still visible and obviously stabilized in soil. The fate of cytosolic compounds was followed using the example of a nickel-containing superoxide dismutase (NiSOD) which was found to be released after death of cells grown in liquid soil-extract medium. Activity of the enzyme was proven for concentrated media supernatant by a gel-based qualitative activity assay. This indicates that NiSOD remains active in soil after cell death. Hence, bacterial cell death results in the release of cytosolic compounds, e.g., intact proteins, as well as the formation of residual cell-envelope fragments contributing to SOM formation.

Persistent UFZ Identifier
Schütze, E., Miltner, A., Nietzsche, S., Achtenhagen, J., Klose, M., Merten, D., Greyer, M., Roth, M., Kästner, M., Kothe, E. (2013):
Live and death of streptomyces in soil—what happens to the biomass?
J. Plant Nutr. Soil Sci. 176 (5), 665 - 673 10.1002/jpln.201300077