Publication Details

Reference Category Conference contributions
DOI / URL
Title (Primary) Characterization of reference materials for an economic calibration approach for low-cost soil moisture sensors
Title (Secondary) Proceedings of the 10th International Conference on Electromagnetic Wave Interaction with Water and Moist Substances ISEMA 2013, Weimar / Germany, September 25-27,2013
Author Kögler, S.; Wagner, N.; Zacharias, S.; Wollschläger, U.;
Publisher Kupfer, K.; Wagner, N.;
Year 2013
Department MET;
Language englisch;
POF III (all) T31;
Keywords soil moisture; low-cost sensor; calibration
UFZ wide themes RU5;
Abstract Wireless soil moisture sensor networks provide distributed observations of soil moisture dynamics with
high temporal resolution as they typically involve a high number of sensors. Low-cost sensors are
preferred for this application. These sensors most often show a sensor-to-sensor variability. Hence, a
sensor-specific calibration is advantageous prior to field installation.
Calibration methods relating sensor reading to reference permittivity described in the literature feature
calibration media which are harmful to health and to the sensor. One less aggressive alternative is to use
glass beads and ethylene glycol which is used by Decagon Devices. For this calibration it is essential to
know the complex permittivity of the reference media. We will provide complex permittivity data for the
reference media: glass beads, ethylene glycol and glass beads mixed with ethylene glycol.
ID 14288
Persistent UFZ Identifier http://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=14288
Kögler, S., Wagner, N., Zacharias, S., Wollschläger, U. (2013):
Characterization of reference materials for an economic calibration approach for low-cost soil moisture sensors
In: Kupfer, K., Wagner, N. (eds.)
Proceedings of the 10th International Conference on Electromagnetic Wave Interaction with Water and Moist Substances ISEMA 2013, Weimar / Germany, September 25-27,2013
MFPA, Institute of Material Research and Testing at the Bauhaus-University, Weimar, p. 442 - 448