Publication Details

Category Text Publication
Reference Category Journals
DOI 10.1016/j.chemosphere.2013.03.061
Title (Primary) Organic compounds in olive mill wastewater and in solutions resulting from hydrothermal carbonization of the wastewater
Author Poerschmann, J.; Weiner, B.; Baskyr, I.
Source Titel Chemosphere
Year 2013
Department TUCHEM
Volume 92
Issue 11
Page From 1472
Page To 1482
Language englisch
Keywords Olive mill wastewater; Biophenols; Lipids; Hydrothermal carbonization --------------------------------------------------------------------------------
UFZ wide themes RU4;
Abstract

Organic components in olive mill wastewater (OMW) were analyzed by exhaustive solvent extraction of the lyophilisate followed by pre-chromatographic derivatization techniques and GC/MS-analysis of the extracts. Simple biophenols including tyrosol (Tyr), hydroxytyrosol (OH-Tyr) and homovanillic alcohol as well as complex biophenols including decarbomethoxy ligostride aglycon and decarbomethoxy oleuropein aglycon proved most abundant analytes. Hydroxylated benzoic and cinnamic acids are less abundant, which may indicate a humification process to have occurred. The pattern of organic components obtained from native OMW was compared with that obtained from hydrothermal carbonization (HTC) of the waste product. Former results provided strong evidence that HTC of OMW at 220 °C for 14 h results in an almost complete hydrolysis of complex aglycons. However, simple biophenols were not decomposed on hydrothermal treatment any further. Phenol and benzenediols as well as low molecular weight organic acids proved most abundant analytes which were generated due to HTC. Similarly to aglycons, lipids including most abundant acylglycerines and less abundant wax esters were subjected almost quantitatively to hydrolysis under hydrothermal conditions. Fatty acids (FAs) released from lipids were further decomposed. The pathways of volatile analytes in both native OMW and aqueous HTC solutions were studied by solventless headspace-Solid Phase Micro Extraction. Basically, a wide array low molecular alcohols and ketones occurring in native OMW survived the HTC process.

Persistent UFZ Identifier https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=13999
Poerschmann, J., Weiner, B., Baskyr, I. (2013):
Organic compounds in olive mill wastewater and in solutions resulting from hydrothermal carbonization of the wastewater
Chemosphere 92 (11), 1472 - 1482 10.1016/j.chemosphere.2013.03.061