Publication Details

Category Text Publication
Reference Category Journals
DOI 10.1136/gutjnl-2012-303184
Title (Primary) Gut microbiota disturbance during antibiotic therapy: a multi-omic approach
Author Pérez-Cobas, A.E.; Gosalbes, M.J.; Friedrichs, A.; Knecht, H.; Artacho, A.; Eismann, K.; Otto, W.; Rojo, D.; Bargiela, R.; von Bergen, M.; Neulinger, S.C.; Däumer, C.; Heinsen, F.A.; Latorre, A.; Barbas, C.; Seifert, J.; Martins dos Santos, V.; Ott, S.J.; Ferrer, M.; Moya, A.
Source Titel Gut
Year 2013
Department PROTEOM
Volume 62
Page From 1591
Page To 1601
Language englisch
UFZ wide themes ru3
Abstract Objective
Antibiotic (AB) usage strongly affects microbial intestinal metabolism and thereby impacts human health. Understanding this process and the underlying mechanisms remains a major research goal. Accordingly, we conducted the first comparative omic
investigation of gut microbial communities in faecal samples taken at multiple time points from an individual subjected to β-lactam therapy.
Methods
The total (16S rDNA) and active (16S rRNA) microbiota, metagenome, metatranscriptome (mRNAs), metametabolome (high-performance liquid chromatography coupled to electrospray ionisation and quadrupole time-of-flight mass spectrometry) and
metaproteome (ultra high performing liquid chromatography coupled to an Orbitrap MS² instrument [UPLC-LTQ Orbitrap-MS/MS]) of a patient undergoing AB therapy for 14 days were evaluated.
Results
Apparently oscillatory population dynamics were observed, with an early reduction in Gram-negative organisms (day 6) and an overall collapse in diversity and possible further colonisation by ‘presumptive’ naturally resistant bacteria (day 11), followed by the re-growth of Gram-positive species (day 14). During this process, the maximum imbalance in the active microbial fraction
occurred later (day 14) than the greatest change in the total microbial fraction, which reached a minimum biodiversity and richness on day 11; additionally, major metabolic changes occurred at day 6. Gut bacteria respond to ABs early by activating systems to avoid the
antimicrobial effects of the drugs, while ‘presumptively’ attenuating their overall energetic metabolic status and the capacity to transport and metabolise bile acid, cholesterol, hormones and vitamins; host–microbial interactions significantly improved after treatment cessation.
Conclusions
This proof-of-concept study provides an extensive description of gut microbiota responses to followup β-lactam therapy. The results demonstrate that ABs targeting specific pathogenic infections and diseases may alter gut microbial ecology and interactions with host metabolism at a much higher level than previously assumed.

Persistent UFZ Identifier https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=13143
Pérez-Cobas, A.E., Gosalbes, M.J., Friedrichs, A., Knecht, H., Artacho, A., Eismann, K., Otto, W., Rojo, D., Bargiela, R., von Bergen, M., Neulinger, S.C., Däumer, C., Heinsen, F.A., Latorre, A., Barbas, C., Seifert, J., Martins dos Santos, V., Ott, S.J., Ferrer, M., Moya, A. (2013):
Gut microbiota disturbance during antibiotic therapy: a multi-omic approach
Gut 62 , 1591 - 1601