Publication Details |
Category | Text Publication |
Reference Category | Journals |
DOI | 10.1016/j.watres.2010.07.044 |
Title (Primary) | Dynamics of sulphur compounds in horizontal sub-surface flow laboratory-scale constructed wetlands treating artificial sewage |
Author | Wiessner, A.; Rahman, K.Z.; Kuschk, P.; Kästner, M.; Jechorek, M. |
Source Titel | Water Research |
Year | 2010 |
Department | UBT; UBZ |
Volume | 44 |
Issue | 20 |
Page From | 6175 |
Page To | 6185 |
Language | englisch |
Keywords | Artificial sewage; Constructed wetland; Dissimilatory sulphate reduction; Elemental sulphur; Immobilization; Juncus effusus; Sulphur oxidation; TOC; Wastewater treatment |
Abstract | The knowledge regarding the dynamics of sulphur compounds inside constructed wetlands is still insufficient. Experiments in planted (Juncus effusus) and unplanted horizontal sub-surface-flow laboratory-scale constructed wetlands fed with artificial wastewater were carried out to evaluate the sulphate reduction, the composition and dynamics of generated sulphur compounds, as well as the influence of carbon load and plants on processes of sulphur transformation. In planted and unplanted wetlands, the addition of organic carbon (TOC of about 120 mg L-1) immediately affected the transformation of up to 90% of the incoming sulphate (150 mg L-1), directing it mainly towards elemental sulphur (30%) and sulphide (8%). During this experimental period, nearly 52% of the transformed sulphate-sulphur was calculated to be immobilized inside the planted wetland and 66% inside the unplanted one. In subsequent experiments, the deficiency of organic carbon inside the planted wetlands favoured the decrease of elemental sulphur in the pore water coupled to retransformation of depot-sulphur to dissolved sulphate. Nearly 90% of the deposited and reduced sulphur was found to be reoxidized. In principle, the results indicate a substantial improvement of this reoxidation of sulphur by oxygen released by the helophytes. Surplus of organic carbon promotes the ongoing sulphate reduction and the stability of deposed and dissolved reduced sulphur compounds. In contrast, inside the unplanted control wetland, a relative stability of the formed sulphur depots and the generated amount of dissolved sulphur compounds including elemental sulphur could be observed independently of the different loading conditions. |
Persistent UFZ Identifier | https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=10663 |
Wiessner, A., Rahman, K.Z., Kuschk, P., Kästner, M., Jechorek, M. (2010): Dynamics of sulphur compounds in horizontal sub-surface flow laboratory-scale constructed wetlands treating artificial sewage Water Res. 44 (20), 6175 - 6185 10.1016/j.watres.2010.07.044 |