Details zur Publikation

Referenztyp Zeitschriften
DOI / URL Link
Titel (primär) Phenol degradation in the strictly anaerobic iron-reducing bacterium Geobacter metallireducens GS-15
Autor Schleinitz, K.M.; Schmeling, S.; Jehmlich, N.; von Bergen, M.; Harms, H.; Kleinsteuber, S.; Vogt, C.; Fuchs, G.;
Journal / Serie Applied and Environmental Microbiology
Erscheinungsjahr 2009
Department ISOBIO; UMB; PROTEOM;
Band/Volume 75
Heft 12
Sprache englisch;
Abstract Information on anaerobic phenol metabolism by physiological groups of bacteria other than nitrate reducers is scarce. We investigated phenol degradation in the strictly anaerobic iron-reducing deltaproteobacterium Geobacter metallireducens GS-15 using metabolite, transcriptome, proteome, and enzyme analyses. The results showed that the initial steps of phenol degradation are accomplished by phenylphosphate synthase (encoded by pps genes) and phenylphosphate carboxylase (encoded by ppc genes) as known from Thauera aromatica, but they also revealed some distinct differences. The pps-ppc gene cluster identified in the genome is functional, as shown by transcription analysis. In contrast to T. aromatica, transcription of the pps- and ppc-like genes was induced not only during growth on phenol, but also during growth on benzoate. In contrast, proteins were detected only during growth on phenol, suggesting the existence of a posttranscriptional regulation mechanism for these initial steps. Phenylphosphate synthase and phenylphosphate carboxylase activities were detected in cell extracts. The carboxylase does not catalyze an isotope exchange reaction between 14CO2 and 4-hydroxybenzoate, which is characteristic of the T. aromatica enzyme. Whereas the enzyme of T. aromatica is encoded by ppcABCD, the pps-ppc gene cluster of G. metallireducens contains only a ppcB homologue. Nearby, but oriented in the opposite direction, is a ppcD homologue that is transcribed during growth on phenol. Genome analysis did not reveal obvious homologues of ppcA and ppcC, leaving open the question of whether these genes are dispensable for phenylphosphate carboxylase activity in G. metallireducens or are quite different from the Thauera counterparts and located elsewhere in the genome.
ID 559
dauerhafte UFZ-Verlinkung https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=559
Schleinitz, K.M., Schmeling, S., Jehmlich, N., von Bergen, M., Harms, H., Kleinsteuber, S., Vogt, C., Fuchs, G. (2009):
Phenol degradation in the strictly anaerobic iron-reducing bacterium Geobacter metallireducens GS-15
Appl. Environ. Microb. 75 (12), 3912 - 3919