Details zur Publikation

Kategorie Textpublikation
Referenztyp Buchkapitel
DOI 10.1007/978-3-032-06136-2_30
Titel (primär) Validation challenges in large-scale tree crown segmentations from remote sensing imagery using deep learning: a case study in Germany
Titel (sekundär) New Trends in Theory and Practice of Digital Libraries: TPDL 2025
Autor Khan, T. ORCID logo ; Krebs, J.; Gupta, S.K. ORCID logo ; Renkel, J.; Arnold, C.; Nölke, N.
Herausgeber Balke, W.-T.; Golub, K.; Manolopoulos, Y.; Stefanidis, K.; Zhang, Z.; Aalberg, T.; Manghi, P.
Erscheinungsjahr 2025
Department BZF; MET
Band/Volume 2694
Seite von 311
Seite bis 323
Sprache englisch
Topic T5 Future Landscapes
Supplements Supplement 1
Abstract Deep-learning–based individual tree-crown (ITC) mapping has become increasingly prominent in remote sensing, yet rigorous validation of these predictions at large spatial scales remains challenging. Using data from an extensive case study involving the mapping of approximately 218.7 million trees across the German federal states of Sachsen and Sachsen-Anhalt from multispectral aerial imagery, we demonstrate that scaling such models beyond controlled environments significantly exacerbates validation difficulties. Minor inaccuracies in tree crown segmentation can critically affect practical applications, including forestry management and urban planning. Our findings highlight validation complexities arising specifically from tree allometry, seasonal variability, shadow effects, and annotation characteristics within training datasets. Consequently, achieving reliable model performance requires deliberate design of training data and potentially leveraging task-specific pre-training through Foundation Models. We emphasize the importance of rigorous validation procedures to ensure the reliability and practical utility of large-scale deep-learning models in ecological and urban management contexts.
dauerhafte UFZ-Verlinkung https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=31575
Khan, T., Krebs, J., Gupta, S.K., Renkel, J., Arnold, C., Nölke, N. (2025):
Validation challenges in large-scale tree crown segmentations from remote sensing imagery using deep learning: a case study in Germany
In: Balke, W.-T., Golub, K., Manolopoulos, Y., Stefanidis, K., Zhang, Z., Aalberg, T., Manghi, P. (eds.)
New Trends in Theory and Practice of Digital Libraries: TPDL 2025
2694
Springer International Publishing, Cham, p. 311 - 323 10.1007/978-3-032-06136-2_30