Details zur Publikation

Kategorie Textpublikation
Referenztyp Zeitschriften
DOI 10.1038/s41586-025-08890-7
Lizenz creative commons licence
Titel (primär) Structure of the ATP-driven methyl-coenzyme M reductase activation complex
Autor Ramírez-Amador, F.; Paul, S.; Kumar, A.; Lorent, C.; Keller, S.; Bohn, S.; Nguyen, T.; Lometto, S.; Vlegels, D.; Kahnt, J.; Deobald, D. ORCID logo ; Abendroth, F.; Vázquez, O.; Hochberg, G.; Scheller, S.; Stripp, S.T.; Schuller, J.M.
Quelle Nature
Erscheinungsjahr 2025
Department MEB
Sprache englisch
Topic T7 Bioeconomy
Supplements https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-025-08890-7/MediaObjects/41586_2025_8890_MOESM1_ESM.pdf
Keywords Bioenergetics; Cryoelectron microscopy; Oxidoreductases
Abstract Methyl-coenzyme M reductase (MCR) is the enzyme responsible for nearly all biologically generated methane1. Its active site comprises coenzyme F430, a porphyrin-based cofactor with a central nickel ion that is active exclusively in the Ni(I) state2,3. How methanogenic archaea perform the reductive activation of F430 represents a major gap in our understanding of one of the most ancient bioenergetic systems in nature. Here we purified and characterized the MCR activation complex from Methanococcus maripaludis. McrC, a small subunit encoded in the mcr operon, co-purifies with the methanogenic marker proteins Mmp7, Mmp17, Mmp3 and the A2 component. We demonstrated that this complex can activate MCR in vitro in a strictly ATP-dependent manner, enabling the formation of methane. In addition, we determined the cryo-electron microscopy structure of the MCR activation complex exhibiting different functional states with local resolutions reaching 1.8–2.1 Å. Our data revealed three complex iron–sulfur clusters that formed an electron transfer pathway towards F430. Topology and electron paramagnetic resonance spectroscopy analyses indicate that these clusters are similar to the [8Fe-9S-C] cluster, a maturation intermediate of the catalytic cofactor in nitrogenase. Altogether, our findings offer insights into the activation mechanism of MCR and prospects on the early evolution of nitrogenase.
dauerhafte UFZ-Verlinkung https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=30708
Ramírez-Amador, F., Paul, S., Kumar, A., Lorent, C., Keller, S., Bohn, S., Nguyen, T., Lometto, S., Vlegels, D., Kahnt, J., Deobald, D., Abendroth, F., Vázquez, O., Hochberg, G., Scheller, S., Stripp, S.T., Schuller, J.M. (2025):
Structure of the ATP-driven methyl-coenzyme M reductase activation complex
Nature 10.1038/s41586-025-08890-7